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INTRODUCTION 

 

The heat equation is the most important example of a linear Partial 

Differential Equation of parabolic type. The theory of the heat equation was 

first developed by Joseph Fourier in 1822 for the purpose of modeling how a 

quantity such as heat diffuses through a given region. Fourier’s work, 

particularly his 1822 treatise for modern mathematical physics and introduced 

the concept of Fourier series, which are essential in solving heat related 

problems. His work not only transformed the understanding of thermal 

phenomena but also had for reaching implications in various scientific and 

engineering disciplines. 

“The effects of heat are subject to constant laws which can't be 

discovered without the aid of mathematical analysis,” said Joseph 

Fourier. 

The derivation of the heat equation involves applying the principle of 

conservation of energy to a small volume of material. Suppose we have a function 

𝒖(𝒙, 𝒚, 𝒛, 𝒕), which describes the temperature of a conducting material at a given 

location (𝒙, 𝒚, 𝒛), I can use this function to determine the temperature at any 

position on the material at a future time. The function 𝒖 changes over time as 

heat spreads throughout the material and the heat equation is used to determine 

this change in the function 𝒖. The gradient of 𝒖 describes which direction and 

at what rate is the temperature changing around a particular region of the 

material. Therefore, the gradient of temperature is the flow of heat through the 

material. This gradient will help us determine the flow of heat through various 

materials. This is analogous to the flow of water in a pipe. 
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The simplest form of the one dimensional heat equation is  

𝒖𝒕 = 𝑲𝒖𝒙𝒙 

where 𝒖(𝒙, 𝒕) represents the temperature distribution, 𝒕 is time, 𝑲 is thermal 

diffusivity of the material. The equation is a parabolic partial differential 

equation, capturing the essence of how heat diffuses through a medium. It is 

another classical equation of mathematical physics and it is very different from 

wave equation. This equation describes also a diffusion, so we sometimes will 

refer to it as diffusion equation. 

This heat equation uses in various field such as modeling problem of science, 

engineering and financial engineering, fluid mechanics, weather forecasting climate 

physics, geo-physics, solar physics, atmospheric scienceetc. 
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IMPORTANCE 

 
• Fundamental Understanding:  The heat equation is a fundamental PDE 

that describes the distribution of heat in a given region over time. It's 

behavior provides various physical phenomena like heat conduction, diffusion 

process and thermal equilibrium. 

 

• Educational Importance:  Learning about heat in PDE provide us valuable 

mathematical and computational skills that are applicable in various scientific 

and engineering fields also it helps us to develop problem solving ability and 

gain a deeper understanding of mathematical modeling and simulation 

technique. 

 

• Medical Applications:  In medical physics and bio physics the heat equation 

is used to model thermal process in biological tissues, such as hyperthermia 

treatments for cancer therapy and thermal ablation techniques for tissue 

destruction. 

 

• Climate Science:  The heat equation is also relevant in climate science for 

modeling the distribution of heat in atmosphere, ocean and land surface. How 

heat transformed and distributed in earth system is helpful for us to study 

about climate change, weather patterns, environmental processes. 

 

• Predictive Modeling:  By solving the heat equation, engineers and scientists 

can predict how temperature distributions evolve over time and space in 

complex systems. It is essential for designing efficient and reliable thermal 

systems and optimizing their performance. 

 

There are some more reason to study the heat equation in PDE like 

engineering applications designing and optimization, safety and reliability 

and computational modeling etc. 
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OBJECTIVE 

My interest in this topic grow when I first read Fourier series in real analysis 

and wave equation in PDE. Here are some steps I shall follow to complete my 

project over one dimensional heat equation.  

1. Introduction to the One-Dimensional Heat Equation: Firstly we will 

introduce the one-dimensional heat equation in partial differential equation 

that describes the distribution of heat over a one-dimensional domain. 

2. Problem Statement: In this project, we aim to investigate the behaviour of 

heat conduction in a one-dimensional domain using the one-dimensional heat 

equation. Specifically, we have to determine the temperature distribution 

within a material rod subjected to certain boundary conditions and initial 

temperature profiles.  

3.  Mathematical Formulation: The one-dimensional heat equation is given 

by 𝑢𝑡 = 𝑐
2𝑢𝑥𝑥 ,where 𝑢(𝑥, 𝑡) represents the temperature distribution at 

position x and time 𝑡, 𝑐2 is thermal diffusivity of the material.  

4. Analytical Methods: To solve the one-dimensional heat equation 

analytically we will employ separation of variable method. In this method we 

will first observe and discuss the initial and boundary conditions and solve 

the eigenvalues and explain how the superposition principle allows for 

constructing the general solution by summing the individual solutions 

corresponding to different eigenvalues.  

5. Validation and Analysis: We will validate the result of the analytical 

solutions obtained using separation of variables by comparing them with 

numerical simulations or experimental data if available.  

6. Conclusion: Lastly we will summarize the key findings and insights gained 

from applying separation of variables to solve the one-dimensional heat 

equation. And discuss the limitations of the approach in modeling and 

solution techniques.  
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𝛼 𝑄1 ⟶ ⟶ 𝑄2 

O A 
x ⟵ 𝑥 ⟶ 

⟵      𝑥 + 𝛿𝑥    ⟶ 

DERIVATION OF 1-D HEAT EQUATION 

 

 

 

 

Consider a homogeneous bar of uniform cross section 𝛼 (𝑐𝑚2). Suppose that the 

size are covered with material impervious to heat. So that the stream line of heat 

flow are perpendicular to the area 𝛼. 

Take one end of the bar as origin and the direction of flow as positive x-axis. Let 

𝜌 be the density (𝑔/𝑐𝑚3) and s be the specific heat (𝑐𝑎𝑙/𝑔 ∙ 𝑑𝑒𝑔) and k be the 

thermal conductivity (𝑐𝑎𝑙/𝑐𝑚 ∙ 𝑑𝑒𝑔 ∙ 𝑠𝑒𝑐). Suppose that the bar is raised to an 

assigned temperature distribution at time 𝑡 = 0and then heat is allowed to flow 

by conduction. 

Let 𝑢(𝑥, 𝑡) be the temperature at a distance x from origin O any time 𝑡. 

If 𝛿𝑢 be the temperature change in slab of thickness 𝛿𝑥 of the bar, then the 

quantity of heat in this slab =  𝜌 ∙ 𝛼 ∙ 𝛿𝑥 ∙ 𝑠
𝜕𝑢

𝜕𝑡
. Where 𝑄1, 𝑄2are respectively the 

rate (𝑐𝑎𝑙/𝑠𝑒𝑐) of inflow and outflow of heat. 

Also we know from Fourier law of heat conduction, if 𝑄(𝑐𝑎𝑙/𝑠𝑒𝑐) be the rate of 

heat flow through a slab of area 𝛼(𝑐𝑚2) and thickness 𝛿𝑥 where the differences 

of temperature at the faces in 𝛿𝑢 then 𝑄 =  −𝑃 ∙ 𝛼
𝜕𝑢

𝜕𝑥
 

                                                                           where 𝑃 is thermal conductivity. 

 

Now,        

𝑄1 = −𝑃𝛼 [
𝜕𝑢

𝜕𝑥
]
 𝑎𝑡 𝑥

  𝑎𝑛𝑑   𝑄2 = −𝑃𝛼 [
𝜕𝑢

𝜕𝑥
]
 𝑎𝑡 𝑥+𝛿𝑥
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∴ 𝜌 ∙ 𝛼 ∙ 𝛿𝑥 ∙ 𝑠
𝜕𝑢

𝜕𝑡
=  𝑃𝛼 [

𝜕𝑢

𝜕𝑥
]
 𝑎𝑡 𝑥+𝛿𝑥

−  𝑃𝛼 [
𝜕𝑢

𝜕𝑥
]
 𝑎𝑡 𝑥

                    

⇒
𝜕𝑢

𝜕𝑡
=  

𝑃

𝜌𝑠

{
 

 [
𝜕𝑢
𝜕𝑥
]
 𝑎𝑡 𝑥+𝛿𝑥

 −  [
𝜕𝑢
𝜕𝑥
]
 𝑎𝑡 𝑥

𝛿𝑥

}
 

 

  

Writing   
𝑃

𝛿𝑠
= 𝐾, called the diffusivity of the substance(𝑐𝑚2/sec )and taking 

limit as 𝛿𝑥 → 0, we get  

𝜕𝑢

𝜕𝑡
= 𝐾

𝜕2𝑢

𝜕𝑥2
 

which is the required one dimensional heat equation or one dimensional 
diffusion equation. 
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GENERAL SOLUTION OF 1-D HEAT 

EQUATION 

❖ Using method of separation of variables 

Consider    
𝜕𝑢

𝜕𝑡
= 𝐾

𝜕2𝑢

𝜕𝑥2
  _______________ (1) 

Let the solution is the form 𝑢(𝑥, 𝑡) = 𝑋(𝑥) ∙ 𝑇(𝑡) ≠ 0 

∴
𝜕𝑢

𝜕𝑡
= 𝑋𝑇′ ,  

𝜕2𝑢

𝜕𝑥2
= 𝑋′′𝑇 

where dashes denote the derivative with respect to relevant variables. 

From (1),           𝑋𝑇′ = 𝐾 ∙ 𝑋′′𝑇  

                      ⇒ 
𝑋′′

𝑋
=

1

𝐾
∙
𝑇′

𝑇
   __________ (2) 

As 𝑥 and 𝑡 are independent variables, so (2) is true if both side is equal to some 

constant 𝜇, called arbitrary separation constant. 

∴
𝑋′′

𝑋
=
1

𝐾
∙
𝑇′

𝑇
= 𝜇 

⇒ 𝑋′′ − 𝜇𝑋 = 0 _______ (3)       and       𝑇′ − 𝜇𝐾𝑇 = 0 ________ (4) 

Following three cases arise :- 

➢ Case 1:        When 𝜇 = 0 

                     From (3) & (4) we get, 

                     𝑋′′ = 0   and   𝑇′ = 0 

                ⇒ 𝑋(𝑥) = 𝐴1𝑥 + 𝐵1 and 𝑇(𝑡) = 𝐶1 

                 ∴ 𝑢(𝑥, 𝑡) = (𝐴1𝑥 + 𝐵1)𝐶1 

                                 = 𝐴2𝑥 + 𝐴3  

where 𝐴2 = 𝐴1𝐶1 and 𝐴3 = 𝐵1𝐶1 are arbitrary constant. 

 

➢ Case 2:        When 𝜇 > 0, say 𝜇 = 𝜆2,   𝜆 ≠ 0 

                     From (3) & (4) we get, 

                     𝑋′′ − 𝜆2𝑥 = 0  and 𝑇′ − 𝜆2𝐾𝑇 = 0  

                ⇒ 𝑋(𝑥) = 𝑎1𝑒
𝜆𝑥 + 𝑏1e

−𝜆𝑥   and   𝑇(𝑡) = 𝐶1𝑒
𝜆2𝐾𝑇 
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                           ∴ 𝑢(𝑥, 𝑡) = 𝑋(𝑥)𝑇(𝑡) 

                                          = (𝑎1𝑒
𝜆𝑥 + 𝑏1e

−𝜆𝑥)𝐶1𝑒
𝜆2𝐾𝑇 

                                          = (𝐴4𝑒
𝜆𝑥 = 𝐴5𝑒

−𝜆𝑥)𝑒𝜆
2𝐾𝑇 

           where 𝐴4 = 𝑎1𝐶1 and 𝐴5 = 𝑏1𝐶1 are arbitrary constant. 

 

➢ Case 3:        When 𝜇 < 0, say 𝜇 = −𝜆2,   𝜆 ≠ 0 

                     From (3) & (4) we get, 

                     𝑋′′ + 𝜆2𝑥 = 0  and 𝑇′ + 𝜆2𝐾𝑇 = 0  

                ⇒ 𝑋(𝑥) = 𝑎1𝑐𝑜𝑠 (𝜆𝑥) + 𝑏1𝑠𝑖𝑛 (𝜆𝑥)   and   𝑇(𝑡) = 𝐶2𝑒
−𝜆2𝐾𝑇 

                           ∴ 𝑢(𝑥, 𝑡) = {𝑎2 𝑐𝑜𝑠(𝜆𝑥) + 𝑏2𝑠𝑖 𝑛(𝜆𝑥)}𝐶2𝑒
−𝜆2𝐾𝑇 

                                           = {𝐴6 𝑐𝑜𝑠(𝜆𝑥) + 𝐴7𝑠𝑖 𝑛(𝜆𝑥)}𝑒
−𝜆2𝐾𝑇 

          where 𝐴6 = 𝑎2𝐶2 and 𝐴7 = 𝑏2𝐶2 are arbitrary constant. 

∴ Three possible solutions are  

                                      𝑢(𝑥, 𝑡) = 𝐴2𝑥 = 𝐴3 

                                      𝑢(𝑥, 𝑡) = (𝐴4𝑒
𝜆𝑥 + 𝐴5𝑒

−𝜆𝑥)𝑒𝜆
2𝐾𝑇 

                                      𝑢(𝑥, 𝑡) =  {𝐴6 𝑐𝑜𝑠(𝜆𝑥) + 𝐴7𝑠𝑖 𝑛(𝜆𝑥)}𝑒
−𝜆2𝐾𝑇 

where 𝐴2, 𝐴3, 𝐴4, 𝐴5, 𝐴6, 𝐴7 are arbitrary constant. 

We have to choose that solution which is consistent with the physical nature of 
the problem. 
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▪ Initial and boundary condition for one dimensional heat 

equation: 
 

Consider one dimensional heat equation 
𝜕𝑢

𝜕𝑡
= 𝐾

𝜕2𝑢

𝜕𝑥2
 

where 𝑢(𝑥, 𝑡) is temperature at any point 𝑥 and ant time 𝑡. 

The boundary conditions are,  

                                      (i) 𝑢(0, 𝑡) = 𝑇1℃  ∀𝑡 

                           (ii) 𝑢(𝑙, 𝑡) = 𝑇2℃  ∀𝑡 

           where the length of the rod or bar is 𝑙.  

           The initial condition is  

                                              𝑢(𝑥, 0) = 𝑓(𝑥), 0 < 𝑥 < 𝑙  

 

▪ Steady state condition for one dimensional heat 

equation: 
 
When steady state condition arise, the temperature is independent of time 

i.e.  
𝜕𝑢

𝜕𝑡
= 0 

The heat equation becomes,    
𝜕2𝑢

𝜕𝑥2
= 0  or  

𝑑2𝑢

𝑑𝑥2
= 0 

 

▪ Insulated ends: 
 
If an end of heat conducting bar is insulated it means no heat passes 

through that section. 

i.e. the temperature gradient is zero at that point. 

i.e. 
𝜕𝑢

𝜕𝑥
= 0  at that point. 
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SOLUTION OF 1-D HEAT EQUATION 

❖ For homogeneous boundary conditions  

There are four types of problem for homogeneous boundary conditions we will 

discuss. 

◘ Type 1: (When both the ends are at zero temperature and the initial 

temperature is given by f(x)). 

If both ends of a bar of length ‘a’ at temperature 0 and the initial 

temperature is prescribed by the function f(x). Then find the 

temperature distribution u(x,t). 

 

Here we have to find 𝑢(𝑥, 𝑡), where 𝑢(𝑥, 𝑡) is the solution of the problem 

                                                    
𝜕𝑢

𝜕𝑡
= 𝐾

𝜕2𝑢

𝜕𝑥2
                                           (1) 

 

Subject to, boundary conditions   𝑢(0, 𝑡) = 0     ∀𝑡 ≥ 0                       (2) 

                                                      𝑢(𝑎, 𝑡) = 0     ∀𝑡 ≥ 0                       (3) 

                        initial conditions  𝑢(𝑥, 0) = 𝑓(𝑥)     0 < 𝑥 < 𝑎            (4) 

 

By method of separation of variables, the three possible solutions are 

𝑢(𝑥, 𝑡) = 𝐴1𝑥 + 𝐴2                                                                                (5) 

𝑢(𝑥, 𝑡) = (𝐵1𝑒
𝜆𝑥 + 𝐵2𝑒

−𝜆𝑥)𝑒𝜆
2𝐾𝑡                                                        (6) 

𝑢(𝑥, 𝑡) = {Acos(𝜆𝑥) + 𝐵𝑠𝑖𝑛(𝜆𝑥)}𝑒−𝜆
2𝐾𝑡                                             (7) 

where 𝐴1, 𝐴2, 𝐵1, 𝐵2, 𝐴, 𝐵 are arbitrary constants and 𝜆 is arbitrary 

separation constant. 

 

Now applying conditions (2) & (3) in the solution (5) we get, 

𝑢(0, 𝑡) = 0  and  𝑢(𝑎, 𝑡) = 0 

⇒ 𝐴2 = 0  and  𝐴1𝑎 + 𝑎2 = 0 

Both imply,  𝐴1 = 𝐴2 = 0 

From (5), 𝑢(𝑥, 𝑡) = 0 which is trivial. So, we reject this solution. 
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Now applying conditions (2) & (3) in the solution (6) we get, 

𝑢(0, 𝑡) = 0  

⇒ (𝐵1 + 𝐵2)𝑒
𝜆2𝐾𝑡 = 0  

∴ 𝐵1 + 𝐵2 = 0  

𝑢(𝑎, 𝑡) = 0  

(𝐵1𝑒
𝜆𝑎 + 𝐵2𝑒

−𝜆𝑎)𝑒𝜆
2𝐾𝑡 = 0  

𝐵1𝑒
𝜆𝑎 + 𝐵2𝑒

−𝜆𝑎 = 0  as  𝑒𝜆
2𝐾𝑡 ≠ 0 

 

Together imply,  𝐵1 = 𝐵2 = 0 

 

From (6), 𝑢(𝑥, 𝑡) = 0 which is trivial. So, we reject this solution. 

 

Now applying (2) & (3) in the solution (7) we get, 

𝑢(0, 𝑡) = 0  

⇒ 𝐴𝑒−𝜆
2𝐾𝑡 = 0  

⇒ 𝐴 = 0  

𝑢(𝑎, 𝑡) = 0  

⇒ {𝐴𝑐𝑜𝑠(𝜆𝑎) + 𝐵𝑠𝑖𝑛(𝜆𝑎)}𝑒−𝜆
2𝐾𝑡 = 0  

⇒ 𝐴𝑠𝑜𝑠(𝜆𝑎) + 𝐵𝑠𝑖𝑛(𝜆𝑎) = 0 

     Together imply, 𝐵𝑠𝑖𝑛(𝜆𝑎) = 0 

 

If 𝐵 = 0 then 𝑢(𝑥, 𝑡) = 0 which is trivial. 

So, we take 𝐵 ≠ 0 

∴ sin(𝜆𝑎) = 0  

⇒  𝜆𝑎 = 𝑛𝜋,   𝑛 = 1,2,3, …  

⇒ 𝜆 =
𝑛𝜋

𝑎
,   𝑛 = 1,2,3…                                                                        (8) 

 

Hence non-zero solutions 𝑢𝑛(𝑥, 𝑡) are given by, 

𝑢𝑛(𝑥, 𝑡) = 𝐴𝑛 {cos (
𝑛𝜋𝑥

𝑎
) + 𝐵𝑛 sin (

𝑛𝜋𝑥

𝑎
)} 𝑒

−𝑛2𝜋2𝐾𝑡
𝑎2     𝑓𝑜𝑟 𝑛 = 1,2,3,… 

 

As equation (1) is linear and homogeneous so, by super position principal the 

most general solution 𝑢(𝑥, 𝑡) is given by, 

𝑢(𝑥, 𝑡) = ∑𝑢𝑛(𝑥, 𝑡)

∞

𝑛=1
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     = ∑ {𝐴𝑛 cos (
𝑛𝜋𝑥

𝑎
) + 𝐵𝑛 sin (

𝑛𝜋𝑥

𝑎
)} 𝑒

−𝑛2𝜋2𝐾
𝑎2

∞

𝑛=1

 

                         = ∑𝐵𝑛 sin (
𝑛𝜋𝑥

𝑎
) 𝑒

−𝑛2𝜋2𝐾
𝑎2

𝑡

∞

𝑛=1

   𝑎𝑠  𝐴𝑛 = 0 ∀𝑛                 (9) 

Now applying the initial condition   𝑢(𝑥, 0) = 𝑓(𝑥) 

𝑢(𝑥, 0) = ∑𝐵𝑛 sin (
𝑛𝜋𝑥

𝑎
)

∞

𝑛=1

 

    𝑓(𝑥) =  ∑𝐵𝑛 sin (
𝑛𝜋𝑥

𝑎
)

∞

𝑛=1

 

 

which is Fourier sine series. So, the constants are given by,  

                                    𝐵𝑛 =
2

𝑎
∫ 𝑓(𝑥)sin (

𝑛𝜋𝑥

𝑎
)

𝑎

0

𝑑𝑥                          (10) 

 

Therefore, the solution of the given problem is given by (9), where 𝐵𝑛 are 

given by (10). 

 

◘ Type 2: (Steady state condition and zero boundary condition) 

A rod of length ‘l’ has its ends A and B kept at 𝟎℃ and 𝑻℃ respectively 

until steady state condition prevail. If the temperature at B is reduced 

to 𝟎℃ and kept so while that of A is maintained. Find the resulting 

temperature distribution 𝒖(𝒙, 𝒕) taking origin at A. 

 

• When steady state condition prevails: 

 

The heat equation becomes,   
𝒅𝟐𝒖

𝒅𝒙𝟐
= 𝟎  

                                            ⇒ 𝑢 = 𝑎𝑥 + 𝑏 

where 𝑎 & 𝑏 are arbitrary constants. 
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Given that, 

𝑢 = 0 when 𝑥 = 0 

⇒ 𝑎 ∙ 0 + 𝑏 = 0  

⇒ 𝑏 = 0  

𝑢 = 𝑇 when 𝑥 = 𝑙. 

⇒ 𝑎 ∙ 𝑙 + 𝑏 = 𝑇  

⇒ 𝑎𝑙 + 𝑏 = 𝑇 

  

Both implying,  𝑎 =
𝑇

𝑙
 , 𝑏 = 0 

           ∴ 𝒖 =
𝑻

𝒍
𝒙, which is the solution at steady state condition. 

 

• After steady state condition: 

 

The problem is   
𝜕𝑢

𝜕𝑡
= 𝐾

𝜕2𝑢

𝜕𝑥2
 

Subject to, 𝑢(0, 𝑡) = 𝑢(𝑙, 𝑡) = 0  

           and 𝑢(𝑥, 0) = 𝑓(𝑥) =
𝑇

𝑙
𝑥, 0 < 𝑥 < 𝑙 

 

∴ The solution is 𝑢(𝑥, 𝑡) = ∑ 𝐵𝑛 sin (
𝑛𝜋𝑥

𝑙
) 𝑒

−𝐾𝑛2𝜋2𝑡

𝑙2∞
𝑛=1  

 

where  𝐵𝑛 =
2

𝑙
∫

𝑇

𝑙
𝑥𝑠𝑖𝑛 (

𝑛𝜋𝑥

𝑙
) 𝑑𝑥

𝑙

0
 

                 =
2𝑇

𝑙2
{[−

𝑙

𝑛𝜋
𝑥𝑐𝑜𝑠 (

𝑛𝜋𝑥

𝑙
)]
0

𝑙
+

𝑙

𝑛𝜋
∫ cos (

𝑛𝜋𝑥

𝑙
) 𝑑𝑥

𝑙

0
}  

                 =
2𝑇

𝑙2
{
𝑙2

𝑛𝜋
(−1)𝑛+1 +

𝑙2

𝑛2𝜋2
[sin (

𝑛𝜋𝑥

𝑙
)]
0

𝑙
}  

                 =
2𝑇

𝑛𝜋
(−1)𝑛+1  

 

∴ Required solution is. 

𝑢(𝑥, 𝑡) =
2𝑇

𝜋
∑

(−1)𝑛+1

𝑛
sin (

𝑛𝜋𝑥

𝑙
) 𝑒

−𝐾𝑛2𝜋2𝑡
𝑙2

∞

𝑛=1
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◘ Type 3: (Both ends are insulated and the initial temperature is given by f(x)) 

If both ends of a bar of length ‘l’ are insulated and the initial 

temperature f(x) is prescribed then find the temperature distribution 

u(x,t). 
 

We have to solve           
𝝏𝒖

𝝏𝒕
= 𝑲

𝝏𝟐𝒖

𝝏𝒙𝟐
                                                        (1) 

Subject to, boundary conditions  𝑢𝑥(0, 𝑡) = 0  ∀𝑡 ≥ 0                          (2) 

                                                     𝑢𝑥(𝑙, 𝑡) = 0  ∀𝑡 ≥ 0                           (3) 

                       initial conditions  𝑢(𝑥, 0) = 𝑓(𝑥), 0 < 𝑥 < 𝑙                (4) 

 

By method of separation of variables the equation (1) has three possible 

solutions which are , 

𝑢(𝑥, 𝑡) = 𝐴1𝑥 + 𝐴2                                                                                 (5) 

𝑢(𝑥, 𝑡) = (𝐴3𝑒
𝜆𝑥 + 𝐴4𝑒

−𝜆𝑥)𝑒𝐾𝜆
2𝑡                                                         (6) 

𝑢(𝑥, 𝑡) = {𝐴5 cos(𝜆𝑥) + 𝐴6 sin(𝜆𝑥)}𝑒
−𝐾𝜆2𝑡                                          (7) 

where 𝐴1, 𝐴2, 𝐴3, 𝐴4, 𝐴5, 𝐴6 are arbitrary constants and 𝜆 is arbitrary 

separation constant. 
 

Now applying conditions (2) & (3) in the solution (5) we get, 

𝑢𝑥(0, 𝑡) = 0  and  𝑢𝑥(𝑙, 𝑡) = 0 

⇒ 𝐴1 = 0  

∴ 𝑢(𝑥, 𝑡) = 𝐴2 =
1

2
𝑎0 (say) where, 𝑎0 = 2𝐴2 is arbitrary constant. 

In this case we get a solution  𝒖𝟎(𝒙, 𝒕) =
𝟏

𝟐
𝒂𝟎                                       (8) 

 

Now applying conditions (2) & (3) in the solution (6) we get, 

𝑢𝑥(0, 𝑡) = 0  

⇒  𝜆(𝐴3 − 𝐴4 )𝑒
𝐾𝜆2𝑡 = 0  

⇒ 𝐴3 − 𝐴4 = 0  as  𝜆𝑒𝐾𝜆
2𝑡 ≠ 0  

⇒ 𝐴3 = 𝐴4  

𝑢𝑥(𝑙, 𝑡) = 0  

⇒ 𝜆(𝐴3𝑒
𝜆𝑙 − 𝐴4𝑒

−𝜆𝑡)𝑒𝐾𝜆
2𝑡 = 0  

⇒ 𝐴3𝑒
𝜆𝑙 − 𝐴4𝑒

−𝜆𝑡 = 0  

⇒ 𝐴4(𝑒
𝜆𝑙 − 𝑒−𝜆𝑙) = 0 ⇒ 𝐴4 = 0 

         So, in this case 𝑢(𝑥, 𝑡) = 0, which is trivial. So, we reject this case. 
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Now applying conditions (2) & (3) in the solution (7) we get, 

𝑢𝑥(0, 𝑡) = 0   

⇒ 𝜆𝐴6𝑒
−𝐾𝜆2𝑡 = 0  

⇒ 𝐴6 = 0  as  𝜆𝑒−𝐾𝜆
2𝑡 ≠ 0 

 

𝑢𝑥(𝑙, 𝑡) = 0  

⇒ 𝜆[−𝐴5 sin(𝜆𝑙) + 𝐴6 cos(𝜆𝑙)]𝑒
−𝐾𝜆2𝑡 = 0  

⇒ A5 sin(𝜆𝑙) + 𝐴6 cos(𝜆𝑙) = 0  

⇒ 𝐴5 sin(𝜆𝑙) = 0  as  𝐴6 = 0 

 

If  𝐴5 = 0 then 𝑢(𝑥, 𝑡) = 0 is trivial. 

So, let 𝐴5 ≠ 0 

 

 

∴ sin(𝜆𝑙) = 0  

⇒  𝜆𝑙 = 𝑛𝜋 ,  𝑛 = 1,2,3, … 

⇒  𝜆 =
𝑛𝜋

𝑙
 , 𝑛 = 1,2,3, … 

     From (7) we get the solutions are  

                           𝑢𝑛(𝑥, 𝑡) = 𝑎𝑛 cos (
𝑛𝜋𝑥

𝑙
) 𝑒

−𝐾𝑛2𝜋2𝑡

𝑙2  , 𝑛 = 1,2,3, …  

 

As equation (1) is linear and homogeneous so by super position principal from 

(8) & (9) we get the most general solution is given by 

                           𝑢(𝑥, 𝑡) = 𝑢0(𝑥, 𝑡) + ∑ 𝑢𝑛(𝑥, 𝑡)
∞
𝑛=1  

                                       =
1

2
𝑎0 + ∑ 𝑎𝑛 cos (

𝑛𝜋𝑥

𝑙
) 𝑒

−𝐾𝑛2𝜋2𝑡

𝑙2  ∞
𝑛=1              (10)  

 

Now using (4) from (10) we get,  

𝑢(𝑥, 0) = 𝑓(𝑥) =
1

2
𝑎0 +∑𝑎𝑛 cos (

𝑛𝜋𝑥

𝑙
)

∞

𝑛=1

  𝑖𝑛  (0, 𝑙) 

where  𝑎0 =
2

𝑙
∫ 𝑓(𝑥)𝑑𝑥
𝑙

0
                                                                        (11) 

     and 𝑎𝑛 =
2

𝑙
∫ 𝑓(𝑥) cos (

𝑛𝜋𝑥

𝑙
)𝑑𝑥,

𝑙

0
 𝑛 = 1,2,3, …                                (12) 

 

Therefore, the required solution of the given problem is given by (10) where 

𝑎0 is given by (11) & 𝑎𝑛 is given by (12). 
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◘ Type 4: (One end is insulated and the other end is at zero temperature and 

initial temperature is given by f(x)) 

If one end of a bar of length ‘l’ is insulated and the other end is at 

temperature zero and the initial temperature f(x) is prescribed then find 

the temperature distribution u(x,t). 

 

We have to solve   
𝝏𝒖

𝝏𝒕
= 𝑲

𝝏𝟐𝒖

𝝏𝒙𝟐
                                                                 (1) 

Subject to, boundary conditions  𝑢𝑥(0, 𝑡) = 0  ∀𝑡 ≥ 0                          (2) 

                                                      𝑢(𝑙, 𝑡) = 0  ∀𝑡 ≥ 0                            (3) 

                        initial conditions  𝑢(𝑥, 0) = 𝑓(𝑥), 0 < 𝑥 < 𝑙                (4) 

 

By method of separation of variables, the equation (1) has three possible 

solutions which are, 

𝑢(𝑥, 𝑡) = 𝐴1𝑥 + 𝐴2                                                                                 (5) 

𝑢(𝑥, 𝑡) = (𝐴3𝑒
𝜆𝑥 + 𝐴4𝑒

−𝜆𝑥)𝑒𝐾𝜆
2𝑡                                                         (6) 

𝑢(𝑥, 𝑡) = {𝐴5 cos(𝜆𝑥) + 𝐴6 sin(𝜆𝑥)}𝑒
−𝐾𝜆2𝑡                                          (7) 

where 𝐴1, 𝐴2, 𝐴3, 𝐴4, 𝐴5, 𝐴6 are arbitrary constants and 𝜆 is arbitrary 

separation constant. 

 

Now applying conditions (2) & (3) in the solution (5) we get, 

𝑢𝑥(0, 𝑡) = 0  and  𝑢𝑥(𝑙, 𝑡) = 0 

⇒ 𝐴1 = 𝐴2 = 0  

∴ 𝑢(𝑥, 𝑡) = 0 which is trivial. So, we reject this solution. 

 

Now applying conditions (2) & (3) in the solution (6) we get, 

 𝑢𝑥(0, 𝑡) = 0  

⇒ 𝐴3 − 𝐴4 = 0  

𝑢(𝑙, 𝑡) = 0  

⇒ 𝐴3𝑒
𝜆𝑙+ 𝐴4𝑒

−𝜆𝑡 = 0 

     Together imply, 𝐴3 = 𝐴4 = 0 

In this case 𝑢(𝑥, 𝑡) = 0, which is trivial.  So, we reject this case. 
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Now applying conditions (2) & (3) in the solution (7) we get, 

𝑢𝑥(0, 𝑡) = 0 ⇒ 𝐴6 = 0     and     𝑢(𝑙, 𝑡) = 0 ⇒ 𝐴5 cos(𝜆𝑙) = 0 

 

If 𝐴5 = 0 then 𝑢(𝑥, 𝑡) = 0 which is trivial. 

So, let 𝐴5 ≠ 0  

  

 

 ∴ cos(𝜆𝑙) = 0 

⇒ 𝜆𝑙 = (2𝑛 − 1)
𝜋

2
 , 𝑛 = 1,2,3,…   

⇒ 𝜆 =
2𝑛−1

𝑙

𝜋

2
 , 𝑛 = 1,2,3,… 

 

Hence from (7) the solutions are  

𝑢𝑛(𝑥, 𝑡) = 𝑎𝑛 cos (
(2𝑛 − 1)𝜋𝑥

2𝑙
) 𝑒

−𝐾(2𝑛−1)2𝜋2𝑡
4𝑙2  , 𝑛 = 1,2,3,… 

 

As equation (1) is linear and homogeneous so by principal of superposition 

the most general solution is given by 

𝑢(𝑥, 𝑡) = ∑𝑢𝑛(𝑥, 𝑡)

∞

𝑛=1

                                                        

                                =  ∑ 𝑎𝑛 cos (
(2𝑛 − 1)𝜋𝑥

2𝑙
) 𝑒

−𝐾(2𝑛−1)2𝜋2𝑡
4𝑙2

∞

𝑛=1

             (8)  

 

Using (4) from (8) we get, 

𝑢(𝑥, 0) = ∑𝑎𝑛 cos (
(2𝑛 − 1)𝜋𝑥

2𝑙
)

∞

𝑛=1

                               

where 

                     𝑎𝑛 =
2

𝑙
∫ 𝑓(𝑥) cos (

(2𝑛 − 1)𝜋𝑥

2𝑙
)𝑑𝑥

𝑙

0

 ,                        (9) 

 

∴ Required solution is given by (8) where 𝑎𝑛 is given by (9). 
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EXAMPLES 
 

1. Solve the initial boundary-value problem  
𝝏𝟐𝒖

𝝏𝒙𝟐
=

𝟏

𝑲

𝝏𝒖

𝝏𝒕
  satisfying 𝒖(𝟎, 𝒕) =

𝒖(𝒍, 𝒕) = 𝟎  and  𝒖(𝒙, 𝟎) = 𝒍𝒙 − 𝒙𝟐. 

 

Clearly it is a above type 1 problem. So, the required solution is 

𝑢(𝑥, 𝑡) = ∑𝐵𝑛 sin (
𝑛𝜋𝑥

𝑙
) 𝑒

−𝐾𝑛2𝜋2𝑡
𝑙2

∞

𝑛=1

 

 

Where 𝐵𝑛 = 
2

𝑙
∫ (𝑙𝑥 − 𝑥2) sin (

𝑛𝜋𝑥

𝑙
) 𝑑𝑥

𝑙

0
  

                  =
2

𝑙
{[−(𝑙𝑥 − 𝑥2)

𝑙

𝑛𝜋
cos (

𝑛𝜋𝑥

𝑙
)]
0

𝑙
+

𝑙

𝑛𝜋
∫ (𝑙 − 2𝑥) cos (

𝑛𝜋𝑥

𝑙
)𝑑𝑥

𝑙

0
}  

                  =
2

𝑙
{0 + [

𝑙2

𝑛2𝜋2
(𝑙 − 2𝑥) sin (

𝑛𝜋𝑥

𝑙
)]
0

𝑙

−
𝑙2

𝑛2𝜋2
∫ (−2) sin (

𝑛𝜋𝑥

𝑙
) 𝑑𝑥

𝑙

0
} 

                  =
4𝑙

𝑛2𝜋2
∫ sin (

𝑛𝜋𝑥

𝑙
)𝑑𝑥

𝑙

0
 

                  = −
4𝑙2

𝑛3𝜋3
[cos (

𝑛𝜋𝑥

𝑙
)]
0

𝑙
 

                  = −
4𝑙2

𝑛3𝜋3
[(−1)𝑛 − 1] 

                  =
4𝑙2

𝑛3𝜋3
[1 − (−1)𝑛 ] 

                  = {
  0                   , 𝑤ℎ𝑒𝑛 𝑛 𝑖𝑠 𝑒𝑣𝑒𝑛
8𝑙2

𝑛3𝜋3
             , 𝑤ℎ𝑒𝑛 𝑛 𝑖𝑠 𝑜𝑑𝑑

 

Therefore,  

𝑢(𝑥, 𝑡) = ∑
8𝑙2

𝑛3𝜋3
sin (

𝑛𝜋𝑥

𝑙
) 𝑒

−𝐾𝑛2𝜋2

𝑙2
𝑡
  

∞

𝑛=𝑜𝑑𝑑

                    

                             =
8𝑙2

𝜋3
∑

1

(2𝑚 − 1)3
sin (

(2𝑚 − 1)𝜋𝑥

𝑙
) 𝑒

−𝐾(2𝑚−1)2𝜋2𝑡
𝑙2

∞

𝑛=1

 

 

which is the required solution for the given problem. 
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2. A rod of length ‘l’ has its ends A and B kept at 𝟎℃ and 𝟏𝟐𝟎℃ 

respectively until steady state condition prevail. If the temperature at 

B is reduced to 𝟎℃ and kept so while that of A is maintained. Find the 

resulting temperature distribution 𝒖(𝒙, 𝒕) taking origin at A. 
 

• When steady state condition prevails: 

The heat equation becomes,   
𝑑2𝑢

𝑑𝑥2
= 0  

                                            ⇒ 𝑢 = 𝑎𝑥 + 𝑏 

where 𝑎 & 𝑏 are arbitrary constants. 

Given that,  𝑢 = 0 when 𝑥 = 0   and  𝑢 = 120 when 𝑥 = 𝑙. 

⇒ 𝑎 ∙ 0 + 𝑏 = 0                           and 𝑎 ∙ 𝑙 + 𝑏 = 120 

⇒ 𝑏 = 0                                       and 𝑎𝑙 + 𝑏 = 120 

Both implying, 𝑎 =
120

𝑙
 , 𝑏 = 0 

 

∴ 𝑢 =
120

𝑙
𝑥, which is the solution at steady state condition. 

 

• After steady state condition: 

The problem is   
𝜕𝑢

𝜕𝑡
= 𝐾

𝜕2𝑢

𝜕𝑥2
 

Subject to, 𝑢(0, 𝑡) = 𝑢(𝑙, 𝑡) = 0  

           and 𝑢(𝑥, 0) = 𝑓(𝑥) =
120

𝑙
𝑥, 0 < 𝑥 < 𝑙 

 

∴ The solution is 𝑢(𝑥, 𝑡) = ∑ 𝐵𝑛 sin (
𝑛𝜋𝑥

𝑙
) 𝑒

−𝐾𝑛2𝜋2𝑡

𝑙2∞
𝑛=1  

 

where  𝐵𝑛 =
2

𝑙
∫

120

𝑙
𝑥𝑠𝑖𝑛 (

𝑛𝜋𝑥

𝑙
)𝑑𝑥

𝑙

0
 

                 =
240

𝑙2
{[−

𝑙

𝑛𝜋
𝑥𝑐𝑜𝑠 (

𝑛𝜋𝑥

𝑙
)]
0

𝑙
+

𝑙

𝑛𝜋
∫ cos (

𝑛𝜋𝑥

𝑙
)𝑑𝑥

𝑙

0
}  

                 =
240

𝑙2
{
𝑙2

𝑛𝜋
(−1)𝑛+1 +

𝑙2

𝑛2𝜋2
[sin (

𝑛𝜋𝑥

𝑙
)]
0

𝑙

}  

                 =
240

𝑛𝜋
(−1)𝑛+1  

 

∴ Required solution is  𝑢(𝑥, 𝑡) =
240

𝜋
∑

(−1)𝑛+1

𝑛
sin (

𝑛𝜋𝑥

𝑙
) 𝑒

−𝐾𝑛2𝜋2𝑡

𝑙2∞
𝑛=1 . 
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3. Find the temperature distribution u(x,t) of a rod of 20cm whose both 

ends are immolated and initial temperature is given by f(x) = x(20-x); 

0<x<20. 

 

We have to solve   
𝜕𝑢

𝜕𝑡
= 𝐾

𝜕2𝑢

𝜕𝑥2
  

Subject to, boundary conditions  𝑢𝑥(0, 𝑡) = 0  ∀𝑡 ≥ 0  

                                                     𝑢𝑥(20, 𝑡) = 0  ∀𝑡 ≥ 0  

                  initial conditions  𝑢(𝑥, 0) = 𝑓(𝑥) = 𝑥(20 − 𝑥), 0 < 𝑥 < 20 
 

∴ The temperature distribution 𝑢(𝑥, 𝑡) is given by  

𝑢(𝑥, 𝑡) =
1

2
𝑎0 +∑𝑎𝑛 cos (

𝑛𝜋𝑥

20
) 𝑒

−𝐾𝑛2𝜋2𝑡
400

∞

𝑛=1

 

 

where 𝑎0 =
2

20
∫ 𝑥(20 − 𝑥)𝑑𝑥
20

0
 

                =
1

10
[10𝑥2 −

𝑥3

3
]
0

20

 

                =
1

10
400(10 −

20

3
) 

                =
400

3
 

  

          𝑎𝑛 =
2

20
∫ 𝑥(20 − 𝑥) cos (

𝑛𝜋𝑥

20
) 𝑑𝑥

20

0
 

               =
1

10
{[
20

𝑛𝜋
𝑥(20 − 𝑥) sin (

𝑛𝜋𝑥

20
)]
0

20
−

20

𝑛𝜋
∫ (20 − 2𝑥) sin (

𝑛𝜋𝑥

20
)𝑑𝑥}

20

0
  

               =
4

𝑛𝜋
∫ (𝑥 − 10) sin (

𝑛𝜋𝑥

20
)𝑑𝑥

20

0
 

               =
4

𝑛𝜋
{[−

20

𝑛𝜋
(𝑥 − 10) cos (

𝑛𝜋𝑥

20
 )]

0

20
+

20

𝑛𝜋
∫ cos (

𝑛𝜋𝑥

20
)𝑑𝑥}

20

0
 

               =
800

𝑛2𝜋2
((−1)𝑛+1 − 1) +

80

𝑛2𝜋2
20

𝑛𝜋
[sin (

𝑛𝜋𝑥

20
)]
0

20
 

               =
800

𝑛2𝜋2
{(−1)𝑛+1 − 1} 

               = {
        0              ; 𝑛 = 2𝑚 − 1,𝑚 = 1,2,3,…

−
1600

𝑛2𝜋2
          ; 𝑛 = 2𝑚,𝑚 = 1,2,3,…

 

 

∴ 𝑢(𝑥, 𝑡) =
1

2

400

3
+ ∑

800

𝑛2𝜋2
((−1)𝑛+1 − 1) cos (

𝑛𝜋𝑥

20
) 𝑒

−𝐾𝑛2𝜋2𝑡

400∞
𝑛=𝑒𝑣𝑒𝑛   

                =
200

3
+ ∑ −

1600

4𝑚2𝜋2
cos (

𝑚𝜋𝑥

10
) 𝑒

−𝐾𝑚2𝜋2𝑡

100∞
𝑚=1  
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                =
200

3
−
400

𝜋2
∑

1

𝑚2
cos (

𝑚𝜋𝑥

10
) 𝑒

−𝐾𝑚2𝜋2𝑡

100∞
𝑚=1  

which is the required solution. 

 

4. Solve the initial boundary-value problem  
𝝏𝟐𝒖

𝝏𝒙𝟐
= 𝑲

𝝏𝒖

𝝏𝒕
  satisfying 

𝒖𝒙(𝟎, 𝒕) = 𝒖(𝒍, 𝒕) = 𝟎  ∀ 𝒕 ≥ 𝟎  and  𝒖(𝒙, 𝟎) = 𝒍𝒙 − 𝒙𝟐 , 𝟎 < 𝒙 < 𝒍. 

 

Clearly it is a above type 4 problem. So, the required solution is 

𝑢(𝑥, 𝑡) = ∑𝑎𝑛 cos (
(2𝑛 − 1)𝜋𝑥

2𝑙
) 𝑒

−𝐾(2𝑛−1)2𝜋2𝑡
4𝑙2

∞

𝑛=1

 

 

Where 𝑎𝑛 = 
2

𝑙
∫ (𝑙𝑥 − 𝑥2) cos (

(2𝑛−1)𝜋𝑥

2𝑙
) 𝑑𝑥

𝑙

0
 

                 =
2

𝑙
{[(𝑙𝑥 − 𝑥2) ∙

2𝑙

(2𝑛−1)𝜋
sin (

(2𝑛−1)𝜋𝑥

2𝑙
)]
0

𝑙

  

                                       −∫ (𝑙 − 2𝑥)
2𝑙

(2𝑛−1)𝜋
sin (

(2𝑛−1)𝜋𝑥

2𝑙
) 𝑑𝑥

𝑙

0
} 

                =
2

𝑙
∙

2𝑙

(2𝑛−1)𝜋
{0 + [(𝑙 − 2𝑥) ∙

2𝑙

(2𝑛−1)𝜋
 cos (

(2𝑛−1)𝜋𝑥

2𝑙
)]
0

𝑙

 

                                       −∫ (−2) ∙
2𝑙

(2𝑛−1)𝜋
cos (

(2𝑛−1)𝜋𝑥

2𝑙
)

𝑙

0
𝑑𝑥} 

                =
4

(2𝑛−1)𝜋
{0 −

2𝑙2

(2𝑛−1)𝜋
+

4𝑙

(2𝑛−1)𝑛
∫ cos (

(2𝑛−1)𝜋𝑥

𝑙
)

𝑙

0
𝑑𝑥} 

                =
4

(2𝑛−1)𝜋
{−

2𝑙2

(2𝑛−1)𝜋
+

4𝑙

(2𝑛−1)𝑛
[

2𝑙

(2𝑛−1)𝜋
∙ sin (

(2𝑛−1)𝜋𝑥

2𝑙
)]
0

𝑙

} 

                =
4

(2𝑛−1)𝜋
{−

2𝑙2

(2𝑛−1)𝜋
+

8𝑙2

(2𝑛−1)𝑛
∙ (−1)𝑛} 

                = −
8𝑙2

(2𝑛−1)2𝜋2
+

32𝑙2

(2𝑛−1)3𝜋3
∙ (−1)𝑛 

                =
8𝑙2

(2𝑛−1)2𝜋2
[

4

(2𝑛−1)𝜋
(−1)𝑛 − 1] 

 

Therefore, 

𝑢(𝑥, 𝑡) = ∑
8𝑙2

(2𝑛−1)2𝜋2
[

4

(2𝑛−1)𝜋
(−1)𝑛 − 1] cos (

(2𝑛−1)𝜋𝑥

2𝑙
) 𝑒

−𝐾(2𝑛−1)2𝜋2𝑡

4𝑙2∞
𝑛=1   
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  CONCLUSION 

 

This is just a brief note about Heat Equation where we have mostly discussed 

about homogeneous heat equation, its derivations and solutions. We also 

discussed how various factors like boundary conditions and some examples on 

how to solve heat equation & studied some applications of heat equation in 

science. From the above discussion we can say that PDEs such as heat equation 

is one of the crucial PDEs to solve and study about heat equation in various 

conditions. 
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INTRODUCTION 

“We live in a world of waves’’said Stewart. Mathematical description of wave phenomena is one of 

the fundamentals not only in mechanics but also in many other areas of physics. Water waves, 

sound waves, seismic waves, electromagnetic waves (radio waves, light waves, X-Rays, 

Gamma rays), etc. are known and studied intensively because they are around us and have a 

wide range of applications in real life. For several such reasons wave equation is 

acknowledged as one of the 17 equations that changed the world. It is the hyperbolic type. It 

typically concerns a time variable t, one or more spatial variables,𝑥1, 𝑥2, … , 𝑥𝑛 and a scalar 

function 𝑢 = 𝑢(𝑥1, 𝑥2 , … , 𝑥𝑛 ; 𝑡)  whose values could model, for example, the mechanical 

displacement of a wave. The hyperbolic equations are connected with initial-boundary 

conditions and pure initial conditions. This equation play very important role in the study of 

applied mathematics and physics 

The history of the wave equation is related to names such as Jean d’Alembert, Leonhard Euler, 

Daniel Bernoulli, Luigi Lagrange and Joseph Fourier. The debate on proper solution of the 

wave equation between d’Alembert, Euler and Bernoulli during the 18th century has 

formulated the basics of the analysis and gave impetus to further studies. 

The wave equation describes the propagation of an excitation generated by initial or 

boundary condition with a constant speed c. It is a hyperbolic partial differential equation of 
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second degree. It typically concerns a time variable t, one or more spatial variables 

𝑥1, 𝑥2 , … , 𝑥𝑛  and a scalar function 𝑢 = 𝑢(𝑥1, 𝑥2, … . , 𝑥𝑛 ; 𝑡) whose values could model, for 

example, the mechanical displacement of a wave.  

The wave equation for u is 

𝜕2𝑢

𝜕𝑡2 = 𝑐2𝛻2𝑢 ,Where 𝛻2is the (spatial) and c is a fixed constant. 

Derivation of Wave Equations 

The two cases we will consider are waves traveling along a string under tension, and 

geometryof wave. The methods of derivation are rather different, and they illustrate two of 

the main approaches for obtaining governing equations in many other situations . 

I. Transverse waves in a string under tension 

                                       

Let a string of length l be attached at two end O and A. Let u(x,t) be a displacement at any 

distance x and anytime t. 

Let P and Q two neighbouring point on the string corresponding to the distance𝑥 and 𝑥 +

𝛿𝑥 respectively.  
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We obtain the equation of motion of the string under following assumptions: 

1) The string is perfectly flexible and there is no resistance. 

⟹The tension of the string is tangential to the car at each point.  

Let the tension at P and Q are 𝑇1 and 𝑇2 respectively. If inclination of tension 𝑇1 and 𝑇2 with 

horizontal be 𝛼 and 𝛽 then 

 𝑡𝑎𝑛 𝛼 =
𝜕𝑢

𝜕𝑥
   𝑃  and 𝑡𝑎𝑛  𝛽 =

𝜕𝑢

𝜕𝑥
  𝑄   

2) String moves only vertical direction and there is no motion along horizontal direction. 

Therefore, the sum of the force in horizontal direction must be zero 

i.e. 𝑇2 𝑐𝑜𝑠 𝛽 − (𝑇1 𝑐𝑜𝑠 𝛼) = 0 

⟹ 𝑇1 𝑐𝑜𝑠 𝛼 = 𝑇2 𝑐𝑜𝑠 𝛽 = 𝑇= constant 

3) Gravitational force on the string is neglected . 

By Newton second law motion, mass × acceleration = sum of forces 

𝑚𝛿𝑥 
𝜕2𝑢

𝜕𝑡2 = 𝑇2 𝑠𝑖𝑛 𝛽 − 𝑇1 𝑠𝑖𝑛 𝛼  

⟹
𝑚𝛿𝑥

𝑇
 
𝜕2𝑢

𝜕𝑡2 =
𝑇2 𝑠𝑖𝑛 𝛽

𝑇
−

𝑇1 𝑠𝑖𝑛 𝛼

𝑇
  

⟹
𝜕2𝑢

𝜕𝑡2 =
1

𝑚𝛿𝑥

𝑇

 𝑇2 𝑠𝑖𝑛 𝛽 − 𝑇1 𝑠𝑖𝑛 𝛼   

⟹
𝜕2𝑢

𝜕𝑡2 =
𝑇2 𝑠𝑖𝑛 𝛽

𝑇2  𝑐𝑜𝑠 𝛽
−

𝑇1 𝑠𝑖𝑛 𝛼

𝑇1  𝑐𝑜𝑠 𝛼
      𝑠𝑖𝑛𝑐𝑒 𝑇1 𝑐𝑜𝑠 𝛼 = 𝑇2 𝑐𝑜𝑠 𝛽 = 𝑇  
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⟹
𝜕2𝑢

𝜕𝑡2 =
𝑇

𝑚

1

𝛿𝑥
 𝑡𝑎𝑛 𝛼 – 𝑡𝑎𝑛  𝛽   

              =
𝑇

𝑚

1

𝛿𝑥
 
𝜕𝑢

𝜕𝑥
   𝑃 −

𝜕𝑢

𝜕𝑥
  𝑄   

              =
𝑇

𝑚
  

𝑢𝑥  𝑥+𝛿𝑥 ,𝑡 −𝑢𝑥  𝑥 ,𝑡 

𝛿𝑥
   

=
𝑇

𝑚
 𝑢𝑥𝑥  𝑥, 𝑡   as 𝛿𝑥 ⟶ 0  

⟹
𝜕2𝑢

𝜕𝑡2 = 𝑐2 𝜕2𝑢

𝜕𝑥2  

Which is an one dimensional wave equation of a string. 

II. DERIVATION USING GEOMETRY OF WAVE 

Wave can be expressed in the form𝑓(𝑥 ± 𝑐𝑡) 

By geometry propagating waves: When the wave propagates as result of time t increasing ,it 

maintains its shape. The propagated wave is a copy of the original wave shifted to the right, 

or left,by the distance 𝑐𝑡, c is the wave propagation speed. 

Consider 𝑓(𝑥 − 𝑐𝑡) and consider small changes in 𝑥 and 𝑡, i.e.∆𝑥,∆𝑡. They each cause a small 

shift or translation of 𝑓(𝑥 − 𝑐𝑡) 

Note that ∆𝑥 = 𝑐∆𝑡 (since c is the propagation speed of the wave ) 

So, 
∆𝑓

∆𝑥
=

∆𝑓

𝑐∆𝑡
=

1

𝑐

∆𝑓

∆𝑡
 

Then repeating that we get  
∆2𝑓

∆2𝑥
=  

1

𝑐
 

2 ∆2𝑓

∆2𝑡
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Letting ∆ become a very small we get 
𝜕2𝑓

𝜕𝑥2 =  
1

𝑐
 

2 𝜕2𝑓

𝜕𝑡2  

From the geometry alone, it was only needed to note that a change in t multiplied by the 

velocity yields the same results (as measured by the second derivative) as a change in 𝑥 that is 

,a translation of 𝑓 𝑥 − 𝑐𝑡 . 

 1-D wave equation in its standard form is 
𝜕2𝑢

𝜕𝑡2 = 𝑐2 𝜕2𝑢

𝜕𝑥2  

Example of 1-D waves are: waves on a string /spring. 

 2-D wave equation in its standard form is 
𝜕2𝑢

𝜕𝑡2 = 𝑐2  
𝜕2𝑢

𝜕𝑥2 +
𝜕2𝑢

𝜕𝑦2  

Example of 2-D waves are: water waves 

 3-D wave equation in its standard form is 
𝜕2𝑢

𝜕𝑡2 = 𝑐2  
𝜕2𝑢

𝜕𝑥2 +
𝜕2𝑢

𝜕𝑦2 +
𝜕2𝑢

𝜕𝑧2  

Example of 3-d waves are: light and sound waves. 

 

SOLUTION OF 1-D WAVE EQUATION 

SOLUTION OF ONE DIMENSIONAL WAVE EQUATION BY CANONICAL 

REDUCTION  

The one dimensional way equation is given by  

𝜕2𝑢

𝜕𝑡2 − 𝑐2 𝜕2𝑢

𝜕𝑥2 = 0  ……………………………………………..(1) 

Equality wave equation (1) with 

𝐴
𝜕2𝑢

𝜕𝑥2
+ 𝑏

𝜕2𝑢

𝜕𝑥𝜕𝑡
+ 𝐶

𝜕2𝑢

𝜕𝑡2
= 0  

Here, A= -c²,B = 0 & C= 1 
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Discreminant D = B² - 4AC 

                              = 0 − 4(−𝑐2)  

                                             = 4𝑐2 > 0  

 It follows that the one dimensional wave  equation  

𝐴𝜆2 + 𝐵𝜆 + 𝐶 = 0 

𝑜𝑟, 𝜆2 − 𝐶2 = 0 

𝜆 = ±𝐶 

The characteristic equation corresponding to wave equation are 
𝑑𝑥

𝑑𝑡
± 𝑐 = 0 

The solution corresponding to ODE are  

𝑥 + 𝑐𝑡 = 𝑐1 𝑎𝑛𝑑 𝑥 − 𝑐𝑡 = 𝑐2   𝑤𝑒𝑟𝑒 𝑐1𝑎𝑛𝑑 𝑐2 𝑎𝑟𝑒 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡   

Let us choose  𝜉 = 𝑥 + 𝑐𝑡    and    𝜂 = 𝑥 − 𝑐𝑡 

𝜉𝑥 = 1, 𝜉𝑡 = 𝑐, 𝜉𝑥𝑡 = 𝜉𝑡𝑥 = 0 , 𝜉𝑥𝑥 = 𝜉𝑡𝑡 = 0  

𝜂𝑥 = 1, 𝜂 = 𝑐, 𝜂𝑥𝑡 = 𝜂𝑡𝑥 = 0 , 𝜂𝑥𝑥 = 𝜂 = 0  

𝐽 =  
𝜉𝑥 𝜉𝑡

𝜂𝑥 𝜂𝑡
 =  

1 𝑐
1 −𝑐

 = −2𝑐 ≠ 0  

Therefore, a(𝜉, 𝜂) = A𝜉𝑥
2 + 𝐵𝜉𝑥𝜉𝑡 + 𝐶𝜉𝑡

2 

                                  = 𝑐2 − 𝑐2   

                                  = 0   

b(𝜉, 𝜂) =
𝐷

𝐴
= −4𝑐2 

c(𝜉, 𝜂) = A𝜂𝑥
2 + 𝐵𝜂𝑥𝜂𝑡 + 𝐶𝜂𝑡

2  

             = 𝑐2 − 𝑐2 = 0  

 Thus the wave question (1) reduce as to  

𝑎𝑢𝜉𝜉 + 𝑏𝑢𝜉𝜂 + 𝑐𝑢𝜂𝜂 = 𝑓(𝜉, 𝜂)  
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Or,𝑏𝑢𝜉𝜂 = 𝑓(𝜉, 𝜂)  

Or, 𝑢𝜉𝜂 = 0,Which is the canonical form of wave equation 

Integrating with respect to 𝜉 

𝑢𝜂 = 𝛼 𝜂  Where is a function of alone  

Integrating with respect to 𝜂 

𝑢 =  𝛼 𝜂 𝑑𝜂 + 𝜑 𝜉  

=  𝜓 𝜂 + 𝜑 𝜉  

                                                                      = 𝜑 𝑐 + 𝑐𝑡 + 𝜓(𝑥 + 𝑐𝑡) 

Which is general solution of one dimensional wave equation . 

I. FOR INFINITE STRING : 

The corresponding wave equation will be 
𝜕2𝑢

𝜕𝑡2 = 𝑐2 𝜕2𝑢

𝜕𝑥2   ……………….(1)  -∞ < 𝑥 < ∞, 

with initial condition 𝑢 𝑥, 0 = 𝑓 𝑥 , 𝑢𝑡 𝑥, 0 = 𝑔 𝑥 , that is we specify the initial 

position and initial velocity of the string . 

(This is known as Cauchy problem) 

Let us introduce new independent variables: 

𝜉 = 𝑥 + 𝑐𝑡 𝜂 = 𝑥 − 𝑐𝑡 , 

So that  

𝑥 =
𝜉 + 𝜂

2
𝑡 =

𝜉 − 𝜂

2𝑐
 

Then the new function is 𝑤 𝜉, 𝜂 = 𝑢 𝑥, 𝑦 = 𝑢(
𝜉+𝜂

2
,
𝜉−𝜂

2𝑐
) 

To obtain a differential equation for 𝜔 , we differentiate with respect to 𝜉: 
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𝑤𝜉 =
1

2
𝑢𝑥  

𝜉 + 𝜂

2
,
𝜉 − 𝜂

2𝑐
 +

1

2𝑐
𝑢𝑡(

𝜉 + 𝜂

2
,
𝜉 − 𝜂

2𝑐
) 

and then differentiate with respect to 𝜂 ∶ 

𝑤𝜉𝜂 =
1

4
𝑢𝑥𝑥 −

1

4𝑐
𝑢𝑥𝑡 +

1

4𝑐
𝑢𝑡𝑥 −

1

4𝑐2
𝑢𝑡𝑡  

Since 𝑢𝑥𝑡 = 𝑢𝑡𝑥  , the two middle term cancel ,and we obtain from (1)  that  

𝑤𝜉𝜂 = 0  …………(2) 

Now 𝑤𝜉  must be independent of 𝜂 , so 𝑤𝜉 = 𝜑1 𝜉 , for some function 𝜑1, and 

integrating this with respect to 𝜉 , we obtain that 𝑤 𝜉, 𝜂 =  𝜑 𝜉 + 𝜓 𝜂  , for 

some  function 𝜑 , 𝑠𝑢𝑐 𝑡𝑎𝑡 𝜑 = 𝜑1, and some function 𝜓 , the “constant of 

integration” . Returning to our original variables we obtain  

𝑢 𝑥, 𝑡 = 𝜑 𝑥 + 𝑐𝑡 + 𝜓 𝑥 − 𝑐𝑡   ……………………………(3) 

Now such function u with arbitrary differentiable functions 𝜑 𝑎𝑛𝑑 𝜓 satisfies 

equation (1). So obtain a general solution which depends on two arbitrary functions.  

Equation (1) describes oscillations of an infinite string or a wave in 1-

dimensionalmedium.Tosingle out a unique solution we impose initial condition at 𝑡 = 0: 

𝑢 𝑥, 0 = 𝑓 𝑥 𝑢𝑡 𝑥, 0 = 𝑔 𝑥 ……………………………………(4)  

To simplify our computation , we can use the Superposition Principle 

First we find a solution with arbitrary given f and g =0, then we find a solution with 𝑓 = 0 and 

arbitrary g, and taking the sum of these two solutions . 

For the first solution we plug 𝑡 = 0 into (3) and obtain  
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𝜑 + 𝜓 = 𝑓 𝜑 + 𝜓 = 0 , 

So 𝜑 = 𝜓 =
𝑓

2
, and the first solution ,with zero initial velocity , is  

𝑢1 𝑥, 𝑡 =
1

2
(𝑓 𝑥 + 𝑐𝑡 + 𝑔 𝑥 − 𝑐𝑡 ) …………………………………………..(5)  

For the second solution we differentiate (3) with resect to t and plug 𝑡 = 0.  

We obtain  

𝜑 + 𝜓 = 0 , 𝑐 𝜑′ − 𝜓′ = 𝑔 

Solving this we obtain the second solution  

𝑢2 𝑥, 𝑡 =
1

2𝑐
 𝑔 𝑦 𝑑𝑦

0

𝑥−𝑐𝑡
+

1

2𝑐
 𝑔 𝑦 𝑑𝑦

𝑥+𝑐𝑡

0
     ……………………………………..(6)  

Corresponding to zero initial position. 

Thus the complete solution u of the initial value problem (1) , (4) is given by  

𝑢 𝑥, 𝑡 = 𝑢1 𝑥, 𝑡 + 𝑢2 𝑥, 𝑡 =
1

2
 𝑓 𝑥 + 𝑐𝑡 + 𝑓 𝑥 − 𝑐𝑡  +

1

2𝑐
 𝑔 𝑦 𝑑𝑦

𝑥+𝑐𝑡

𝑥−𝑐𝑡

 

This is the d’Alembert formula. 

NOTE  

Cauchy problem for the one dimensional non-homogeneous wave question
𝝏𝟐𝒖

𝝏𝒕𝟐
−

𝒄𝟐 𝝏𝟐𝒖

𝝏𝒙𝟐 = 𝑭 𝒙, 𝒕 , −∞ < 𝑥 < ∞, 𝑡 > 0 
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Subject to the initial conditions 

𝒖 𝒙, 𝟎 = 𝒇 𝒙 , 𝒖𝒕 𝒙, 𝟎 = 𝒈 𝒙 , 𝟎 ≤ 𝒙 < ∞  

Sol. 

𝒖 𝒙, 𝒕 = 𝒖𝟏 𝒙, 𝒕 + 𝒖𝟐 𝒙, 𝒕 

=
𝟏

𝟐
 𝒇 𝒙 + 𝒄𝒕 + 𝒇 𝒙 − 𝒄𝒕  +

𝟏

𝟐𝒄
 𝒈 𝒚 𝒅𝒚

𝒙+𝒄𝒕

𝒙−𝒄𝒕

+
𝟏

𝟐𝒄
  𝑭 𝜶, 𝜷 

𝒙+𝒄(𝒕−𝜶)

𝜷=𝒙−𝒄(𝒕−𝜶)

𝒕

𝜶=𝟎

𝒅𝜶𝒅𝜷 

 

II. FOR SEMI-INFINITE STRING : 

 With fixed End  

Let us first consider a semi-infinite vibrating string with a fixed end, that is, 

be
𝜕2𝑢

𝜕𝑡2 = 𝑐2 𝜕2𝑢

𝜕𝑥2 , 0 < 𝑥 < ∞, 𝑡 > 0 

𝑢 𝑥, 0 = 𝑓 𝑥 , 𝑢𝑡 𝑥, 0 = 𝑔 𝑥 , 0 ≤ 𝑥 < ∞ 

𝑢 0, 𝑡 = 0, 0 ≤ 𝑡 < ∞ . [ this is known as Dirichlet Boundary Condition] 

It is evident here that the boundary condition at 𝑥 = 0 produces a wave moving 

to the right with the velocity c. Thus, for 𝑥 > 𝑐𝑡, the solution is the same as that 

ofthe infinite string, and the displacement is influenced only by the initial data 

on theinterval [𝑥 − 𝑐𝑡, 𝑥 + 𝑐𝑡]. 
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When 𝑥 < 𝑐𝑡, the interval [x − ct, x + ct] extends onto the negative x-axis 

wherefand g are not prescribed. But from the d’Alembert formula 

𝑢 𝑥, 𝑡 = 𝜑 𝑥 + 𝑐𝑡 + 𝜓 𝑥 − 𝑐𝑡 , 

Where 

𝜑 𝜉 =
1

2
 𝑓 𝜉 +

1

2𝑐
 𝑔 𝑦 𝑑𝑦

𝜉

0

+
𝑘

2
 

𝜓 𝜂 =
1

2
 𝑓 𝜂 +

1

2𝑐
 𝑔 𝑦 𝑑𝑦

𝜂

0

−
𝑘

2
 

We see that 𝑢 0, 𝑡 = 𝜑 𝑐𝑡 + 𝜓 −𝑐𝑡 = 0. 

Hence , 𝜓 −𝑐𝑡 = −𝜑 𝑐𝑡 . 

If we let 𝛼 = −𝑐𝑡, 𝑡𝑒𝑛 𝜓 𝛼 = −𝜑(−𝛼) 

Replacing 𝛼 𝑏𝑦 𝑥 − 𝑐𝑡, we obtain for x<ct, 

𝜓 𝑥 − 𝑐𝑡 = −𝜑 𝑐𝑡 − 𝑥 , 

𝑎𝑛𝑑 𝑒𝑛𝑐𝑒 , 𝜓 𝑥 − 𝑐𝑡 =
1

2
𝑓 𝑐𝑡 − 𝑥 −

1

2𝑐
 𝑔 𝑦 𝑑𝑦

𝑐𝑡−𝑥

0

−
𝑘

2
 

The solution of the initial boundary value problem , therefore is given by  
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𝑢 𝑥, 𝑡 =
1

2
 𝑓 𝑥 + 𝑐𝑡 + 𝑓 𝑥 − 𝑐𝑡  +

1

2𝑐
 𝑔 𝑦 𝑑𝑦

𝑥+𝑐𝑡

𝑥−𝑐𝑡
        for 𝑥 > 𝑐𝑡, 

𝑢 𝑥, 𝑡 =
1

2
 𝑓 𝑥 + 𝑐𝑡 − 𝑓 𝑐𝑡 − 𝑥  +

1

2𝑐
 𝑔 𝑦 𝑑𝑦

𝑥+𝑐𝑡

𝑐𝑡−𝑥
       for 𝑥 < 𝑐𝑡 , 

 With free End  

We consider a semi-infinite string with a free end at 𝑥 = 0. 

We will determine the solution of  

𝜕2𝑢

𝜕𝑡2
= 𝑐2

𝜕2𝑢

𝜕𝑥2
 ,0 < 𝑥 < ∞, 𝑡 > 0 

𝑢 𝑥, 𝑜 = 𝑓 𝑥 , 𝑢𝑡 𝑥, 0 = 𝑔 𝑥 , 0 ≤ 𝑥 < ∞, 

𝑢𝑥 0, 𝑡 = 0,0 ≤ 𝑡 < ∞ .   [ This is known as Neumann’s Boundary 

Condition ] 

As in the case of the fixed end ,for 𝑥 > 𝑐𝑡 the solution is the same as that of 

the infinite string . 

For 𝑥 < 𝑐𝑡, from the d’Alembert solution  

𝑢 𝑥, 𝑡 = 𝜑 𝑥 + 𝑐𝑡 + 𝜓 𝑥 − 𝑐𝑡 , 

We have , 𝑢𝑥 𝑥, 𝑡 = 𝜑′ 𝑥 + 𝑐𝑡 + 𝜓′  𝑥 + 𝑐𝑡 . 

Thus, 𝑢𝑥 0, 𝑡 = 𝜑′ 𝑐𝑡 + 𝜓′ −𝑐𝑡 = 0 

Integration yields   𝜑 𝑐𝑡 − 𝜓 −𝑐𝑡 = 𝑘, where k is a constant . 

Now , if we let 𝛼 = −𝑐𝑡 , we obtain 𝜓 𝛼 = 𝜑 −𝛼 − 𝑘  

Replacing 𝛼 𝑏𝑦 𝑥 − 𝑐𝑡 , we have 𝜓 𝑥 − 𝑐𝑡 = 𝜑 𝑐𝑡 − 𝑥 − 𝑘 

And hence , 𝜓 𝑥 − 𝑐𝑡 =
1

2
 𝑓 𝑐𝑡 − 𝑥 +

1

2𝑐
 𝑔 𝑦 𝑑𝑦 

𝑐𝑡−𝑥

0
−

𝑘

2
 

The solotion of the initial boundary-value problem , therefore ,is given by  
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𝑢 𝑥, 𝑡 =
1

2
 𝑓 𝑥 + 𝑐𝑡 + 𝑓(𝑥 − 𝑐𝑡 ] +

1

2𝑐
 𝑔 𝑦 𝑑𝑦

𝑥+𝑐𝑡

𝑥−𝑐𝑡
        for 𝑥 > 𝑐𝑡 

𝑢 𝑥, 𝑡 =
1

2
 𝑓 𝑥 + 𝑐𝑡 + 𝑓 𝑐𝑡 − 𝑥  +

1

2𝑐
  𝑔 𝑦 𝑑𝑦

𝑥+𝑐𝑡

0
+  𝑔 𝑦 𝑑𝑦

𝑐𝑡−𝑥

0
  for 

𝑥 < 𝑐𝑡. 

III. FOR FINITE STRING  WITH FIXED END : 

We first consider the vibration of the string of length l fixed at both ends.  

The problem is that of finding the solution of 

We will determine the solution of  

𝜕2𝑢

𝜕𝑡2 = 𝑐2 𝜕2𝑢

𝜕𝑡2 , 0 < 𝑥 < 𝑙, 𝑡 > 0   ………………………………………(1) 

𝑢 𝑥, 0 = 𝑓 𝑥 , 𝑢𝑡 𝑥, 0 = 𝑔 𝑥 , 0 ≤ 𝑥 < 𝑙 ,     

𝑢 0, 𝑡 = 0 , 𝑢 𝑙, 𝑡 = 0 ,    𝑡 ≥ 0 

From the previous results, we know that the solution of the wave equation is   

𝑢 𝑥, 𝑡 = 𝜑 𝑥 + 𝑐𝑡 + 𝜓 𝑥 − 𝑐𝑡 .  

Applying the initial condition,we have  

𝑢 𝑥, 0 = 𝜑 𝑥 + 𝜓 𝑥 = 𝑓 𝑥 , 0 ≤ 𝑥 < 𝑙 

𝑢𝑡 𝑥, 0 = 𝑐𝜑′ 𝑥 − 𝑐𝜓′ 𝑥 = 𝑔(𝑥) ,     0 ≤ 𝑥 < 𝑙 

Solving for 𝜑 𝑎𝑛𝑑 𝜓, we find  

𝜑 𝜉 =
1

2
 𝑓 𝜉 +

1

2𝑐
 𝑔 𝑦 𝑑𝑦 

𝜉

0
+

𝑘

2
 , 0 ≤ 𝜉 ≤ 𝑙,   …………………………………..(2) 

𝜓 𝜂 =
1

2
 𝑓 𝜂 +

1

2𝑐
 𝑔 𝑦 𝑑𝑦

𝜂

0
−

𝑘

2
 ,0 ≤ 𝜂 < 𝑙    …………………………………...(3) 

Hence , 

𝑢 𝑥, 𝑡 =
1

2
 𝑓 𝑥 + 𝑐𝑡 + 𝑓 𝑥 − 𝑐𝑡  +

1

2𝑐
 𝑔 𝑦 𝑑𝑦

𝑥+𝑐𝑡  

𝑥−𝑐𝑡
    ………….……….(4)   

For 0 ≤ 𝑥 + 𝑐𝑡 < 𝑙, 𝑎𝑛𝑑 0 ≤ 𝑥 − 𝑐𝑡 < 𝑙  
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The solution is thus uniquely determined by the initial data in the region 

𝑡 ≤
𝑥

𝑐
, 𝑡 ≤

𝑙 − 𝑥

𝑐
 ,    𝑡 ≥ 0 

For large times, the solution depend on the boundary conditions. Applying the 

boundary conditions , we obtain  

𝑢 0, 𝑡 = 𝜑 𝑐𝑡 + 𝜓 −𝑐𝑡 = 0 ,                       𝑡 ≥ 0   …………………..(5) 

𝑢 𝑙, 𝑡 = 𝜑 𝑙 + 𝑐𝑡 + 𝜓 𝑙 − 𝑐𝑡 = 0 , 𝑡 ≥ 0 ……………………(6) 

If we set 𝛼 = −𝑐𝑡 , equation (5) becomes  

𝜓 𝛼 = −𝜑 −𝛼 , 𝛼 ≤ 0 ………………………………………………..(7) 

And if we set 𝛼 = 𝑙 + 𝑐𝑡 , equation (6) takes the form 

𝜑 𝛼 = −𝜓 2𝑙 − 𝛼 ,    𝛼 ≥ 𝑙 …………………………………………….(8) 

With 𝜉 = −𝜂, 𝑤𝑒 𝑚𝑎𝑦 𝑤𝑟𝑖𝑡𝑒 𝑡𝑒 𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛  2  𝑎𝑠  

𝜑 −𝜂 = −
1

2
 𝑓 𝜂 +

1

2𝑐
 𝑔 𝑦 𝑑𝑦 

−𝜂

0
+

𝑘

2
 ,   0 ≤ −𝜂 ≤ 𝑙  ………(9) 

Thus , from (7) and (9), we have 

𝜓 𝜂 = −
1

2
𝑓 −𝜂 −

1

2𝑐
 𝑔 𝑦 𝑑𝑦 

2𝑙−𝜉

0
−

𝑘

2
 ,  −𝑙 ≤ 𝜂 ≤ 0 ………..(10) 

We see that the range of 𝜓 𝜂  is extended to −𝑙 ≤ 𝜂 ≤ 𝑙 . If we put 𝛼 = 𝜉 in the 

equation (8) , 

We obtain 𝜑 𝜉 = −𝜓(2𝑙 − 𝜉) ,  𝜉 ≥ 𝑙 ………………………………(11) 

Then, by putting 𝜂 = 2𝑙 − 𝜉 in the equation (3), we obtain 

𝜓 2𝑙 − 𝜉 =
1

2
 𝑓 2𝑙 − 𝜉 −

1

2𝑐
 𝑔 𝑦 𝑑𝑦 −

𝑘

2

2𝑙−𝜉

0
  ,   0 ≤ 2𝑙 − 𝜉 ≤ 𝑙 ………..(12) 

Substitution of this , in the equation (11) yields  

𝜑 𝜉 = −
1

2
 𝑓 2𝑙 − 𝜉 +

1

2𝑐
 𝑔 𝑦 𝑑𝑦 +

𝑘

2

2𝑙−𝜉

0
 , 𝑙 ≤ 𝜉 ≤ 2𝑙 ……………(13) 
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The range of 𝜑 𝜉  is thus extended to 0 ≤ 𝜉 ≤ 2𝑙 . Continuing in this manner , we 

obtain 𝜑 𝜉  for all 𝜉 ≥ 0 and 𝜓 𝜂  for all 𝜂 ≤ 𝑙 . 

Hence , the solution is determind for all 0 ≤ 𝑥 ≤ 𝑙 and 𝑡 ≥ 0 . 

EXAMPLES 

1. Let u(x,t) be the solution of the following equation
𝝏𝟐𝒖

𝝏𝒕𝟐 = 𝒄𝟐 𝝏𝟐𝒖

𝝏𝒙𝟐   , 𝒙 ∈ ℝ , 𝒕 > 0 , 

Subject to the initial condition 𝑢 𝒙, 𝟎 = 𝒇 𝒙 = 𝟏  𝒊𝒇  𝒙 ≤ 𝟏 

                                                                                            = 𝟎   𝒊𝒇  𝒙 > 𝟏 

𝒂𝒏𝒅 𝒖𝒕 𝒙, 𝟎 = 𝒈(𝒙) = 𝟏    𝒊𝒇  𝒙 ≤ 𝟏 

                                                                               = 𝒐  𝒊𝒇  𝒙 > 𝟏 

Find 𝒖  𝟎,
𝟏

𝟒
  

         ⟹ We know that d'Alembert formula for Cauchy problem is given by 

 𝑢 𝑥, 𝑡 =
1

2
 𝑓 𝑥 + 𝑐𝑡 + 𝑓 𝑥 − 𝑐𝑡  +

1

2𝑐
 𝑔 𝑦 𝑑𝑦 

𝑥+𝑐𝑡

𝑥−𝑐𝑡
 

Here  c=2 , 

Therefore, 𝑢 𝑥, 𝑡 =
1

2
 𝑓 𝑥 + 2𝑡 + 𝑓 𝑥 − 2𝑡  +

1

2.2
 𝑔 𝑦 𝑑𝑦  

𝑥+2𝑡

𝑥−2𝑡
 

Hence, 𝑢  0,
1

4
 =

1

2
 𝑓  

1

2
 + 𝑓  −

1

2
  +

1

4
 𝑔 𝑦 𝑑𝑦 

1

2

−
1

2

 

                              =
1

2
 1 + 1 +

1

4
 1.

1

2

−
1

2

𝑑𝑦 

                              = 1 +
1

4
 

1

2
—

1

2
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                              = 1 +
1

4
=

5

4
  

 

2. We know that d'Alembert formula for Cauchy problem is given by 

Find the solution of the initial value  problem be 
𝝏𝟐𝒖

𝝏𝒕𝟐 = 𝒄𝟐 𝝏𝟐𝒖

𝝏𝒙𝟐   , 𝒙 ∈ ℝ , 𝒕 >

0 , 𝑢 𝒙, 𝟎 = 𝒔𝒊𝒏 𝒙 , 𝒖𝒕 𝒙, 𝟎 = 𝒄𝒐𝒔 𝒙 . 

⇒Clearly it is an infinite string problem , and the solution obtained by the d’Alembert 

formula 𝑢 𝑥, 𝑡 =
1

2
 𝑓 𝑥 + 𝑐𝑡 + 𝑓 𝑥 − 𝑐𝑡  +

1

2𝑐
 𝑔 𝑦 𝑑𝑦 

𝑥+𝑐𝑡

𝑥−𝑐𝑡
 

Here we have 𝑢 𝑥, 0 = 𝑠𝑖𝑛 𝑥  , 𝑢𝑡 𝑥, 0 = 𝑐𝑜𝑠 𝑥 . Then we have 𝑓 𝑥 = 𝑠𝑖𝑛 𝑥  𝑎𝑛𝑑  

𝑔 𝑥 = 𝑐𝑜𝑠 𝑥 . Then 

𝑢 𝑥, 𝑡 =
1

2
 𝑠𝑖𝑛 𝑥 + 𝑐𝑡 + 𝑠𝑖𝑛 𝑥 − 𝑐𝑡  +

1

2𝑐
 𝑐𝑜𝑠 𝑦

𝑥+𝑐𝑡

𝑥−𝑐𝑡

𝑑𝑦 

= 𝑠𝑖𝑛 𝑥 𝑐𝑜𝑠 𝑐𝑡 +
1

2𝑐
 𝑠𝑖𝑛(𝑥 + 𝑐𝑡 − 𝑠𝑖𝑛 𝑥 − 𝑐𝑡 ] 

= 𝑠𝑖𝑛 𝑥 𝑐𝑜𝑠 𝑐𝑡 +
1

𝑐
𝑐𝑜𝑠 𝑥 𝑠𝑖𝑛 𝑐𝑡 .  

3. Solve the initial value problem  

𝒖𝒕𝒕 = 𝒖𝒙𝒙 , −∞ < 𝑥 < ∞ , 𝑡 > 0 

𝒖 𝒙, 𝟎 = 𝒆−𝒙𝟐
 , 𝒙𝝐ℝ   

𝒖𝒕 𝒙, 𝒕 = 𝟎 , 

        ⇒  Here , 𝑓 𝑥 = 𝑒−𝑥2
     𝑔 𝑥 = 0      𝑐 = 1 
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By d’Alembert formula  

𝑢 𝑥, 𝑡 =
1

2
 𝑓 𝑥 + 𝑐𝑡 + 𝑓 𝑥 − 𝑐𝑡  +

1

2𝑐
 𝑔 𝑦 𝑑𝑦

𝑥+𝑐𝑡

𝑥−𝑐𝑡

 

=
1

2
 𝑒− 𝑥+𝑡 2

+ 𝑒− 𝑥−𝑡 2
  

4. Determine the solution of the initial boundary value problem 

𝝏𝟐𝒖

𝝏𝒕𝟐
= 𝟒

𝝏𝟐𝒖

𝝏𝒙𝟐
 , 𝒙 > 0 , 𝑡 > 0, 

𝒖 𝒙, 𝟎 =  𝒔𝒊𝒏 𝒙 , 𝒙 > 0 

𝒖𝒕 𝒙, 𝟎 = 𝟎, 𝒙 ≥ 𝟎 

𝒖 𝒙, 𝟎 = 𝟎 , 𝒕 ≥ 𝟎 . 

⇒Clearly it is a problem of semi-infinite string with free end and the nsolution is given by 

𝑢 𝑥, 𝑡 =
1

2
 𝑓 𝑥 + 𝑐𝑡 + 𝑓 𝑥 − 𝑐𝑡  +

1

2𝑐
 𝑔 𝑦 𝑑𝑦

𝑥+𝑐𝑡

𝑥−𝑐𝑡

         𝑓𝑜𝑟 𝑥 > 𝑐𝑡, 

𝑢 𝑥, 𝑡 =
1

2
 𝑓 𝑥 + 𝑐𝑡 − 𝑓 𝑐𝑡 − 𝑥  +

1

2𝑐
 𝑔 𝑦 𝑑𝑦 

𝑥+𝑐𝑡  

𝑐𝑡−𝑥

          𝑓𝑜𝑟 𝑥 < 𝑐𝑡 

Here   𝑐2 = 4𝑓 𝑥 =  𝑠𝑖𝑛 𝑥 , 𝑥 > 0        𝑎𝑛𝑑 𝑔 𝑥 = 0 

For 𝑥 > 2𝑡 , 

𝑢 𝑥, 𝑡 =
1

2
 𝑓 𝑥 + 2𝑡 + 𝑓 𝑥 − 2𝑡   

=
1

2
  𝑠𝑖𝑛 𝑥 + 2𝑡  −  𝑠𝑖𝑛 𝑥 − 2𝑡    

And for 𝑥 < 2𝑡 , 



Wave Equation 23 

 

𝑢 𝑥, 𝑡 =
1

2
 𝑓 𝑥 + 2𝑡 − 𝑓 2𝑡 − 𝑥  =

1

2
[ 𝑠𝑖𝑛 𝑥 + 2𝑡  −  𝑠𝑖𝑛 2𝑡 − 𝑥  . 

We notice that 𝑢 0, 𝑡 = 0 is satisfied by 𝑢 𝑥, 𝑡  for𝑥 < 2𝑡 (that is 𝑡 > 0). 

5. Determine the solution of the initial boundary value problem 

𝝏𝟐𝒖

𝝏𝒕𝟐
=

𝝏𝟐𝒖

𝝏𝒙𝟐
  , 𝟎 < 𝑥 < ∞ , 𝑡 > 0, 

𝒖 𝒙, 𝟎 = 𝒄𝒐𝒔  
𝝅𝒙

𝟐
  , 𝟎 ≤ 𝒙 < ∞ 

𝒖𝒕 𝒙, 𝟎 = 𝟎 , 𝟎 ≤ 𝒙 < ∞ 

𝒖𝒙 𝒙, 𝟎 = 𝟎 , 𝒕 > 0 

⇒  Clearly it is a problem of semi-infinite string with fixed ends , and the solution is given by 

𝑢 𝑥, 𝑡 =
1

2
 𝑓 𝑥 + 𝑐𝑡 + 𝑓 𝑥 − 𝑐𝑡  +

1

2𝑐
 𝑔 𝑦 𝑑𝑦

𝑥+𝑐𝑡

𝑥−𝑐𝑡
             for 𝑥 > 𝑐𝑡  

𝑢 𝑥, 𝑡 =
1

2
 𝑓 𝑥 + 𝑐𝑡 + 𝑓 𝑐𝑡 − 𝑥  +

1

2𝑐
  𝑔 𝑦 𝑑𝑦

𝑥+𝑐𝑡

0

+  𝑔 𝑦 𝑑𝑦
𝑐𝑡−𝑥

0

 , 𝑓𝑜𝑟 𝑥 < 𝑐𝑡 

Here     𝑐2 = 1𝑓 𝑥 = 𝑐𝑜𝑠  
𝜋𝑥

2
             𝑔 𝑥 = 0 

For 𝑥 > 𝑡 , 

𝑢 𝑥, 𝑡 =
1

2
 𝑓 𝑥 + 𝑡 + 𝑓 𝑡 − 𝑥   

=
1

2
 𝑐𝑜𝑠  

𝜋

2
 𝑥 + 𝑡  + 𝑐𝑜𝑠  

𝜋

2
 𝑡 − 𝑥    

= 𝑐𝑜𝑠
𝜋𝑥

2
𝑐𝑜𝑠

𝜋𝑡

2
 

 

 



Wave Equation 24 

 

 

 

 

APPICATION OF WAVE EQUATION 

Seismology 

Seismology is the scientific study of earthquakes and the propagation of elastic waves 

through the Earth. It involves analyzing seismic waves generated by earthquakes or other 

sources (like explosions) to understand the Earth's internal structure, composition, and 

processes. 

The wave equation is fundamental in seismology as it describes how seismic waves 

propagate through the Earth. The basic form of the wave equation for seismic waves is: 

𝑣2∇2𝑢 −
𝜕2𝑢

𝜕𝑡2
= 0 

where: u represents the displacement vector of the wave, 

 ∇2 is the Laplace operator (representing spatial derivatives),  
𝜕2𝑢

𝜕𝑡2  is the second derivative 

of  u with respect to time, v is the speed of the seismic wave. 

This equation governs how seismic waves (such as P-waves, S-waves, and surface waves) 

travel through different materials and structures within the Earth. In practice, 

seismologists use this equation, along with data from seismic stations around the world, to 
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determine properties such as earthquake locations, magnitudes, and depths, as well as to 

map the Earth's interior. 

The wave equation allows seismologists to interpret the arrival times, amplitudes, and 

frequencies of seismic waves recorded by seismometers to infer details about the Earth's 

subsurface. By studying how these waves propagate through different geological 

materials, seismologists can create detailed models of the Earth's crust, mantle, and core. 

Oceanography 

Oceanography is the scientific discipline that studies the ocean and its various aspects, 

including its physical, chemical, biological, and geological properties. It involves 

understanding ocean currents, waves, tides, marine life, coastal processes, and the 

interactions between the ocean and the atmosphere. 

One of the fundamental tools in studying waves in oceanography is the wave equation. The 

wave equation describes the propagation of waves through a medium, such as water in 

the ocean.  

This equation relates the acceleration of a small element of water (surface elevation) to 

the gravitational force acting on it and its position. Oceanographers use this equation 

(and more complex forms depending on the situation) to model and predict the behavior 

of waves in different oceanic conditions. 

Modeling Waves: Oceanographers use mathematical models based on the wave equation 

to simulate how waves behave under different conditions, such as wind speed, water 

depth, and bottom topography. 
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Predicting Wave Behavior: By solving the wave equation, oceanographers can predict 

characteristics of waves like their height, wavelength, and propagation direction. 

Understanding Ocean Dynamics: Waves play a crucial role in ocean circulation, mixing 

of water masses, coastal erosion, and other processes. Understanding wave behavior helps 

in understanding these broader oceanographic phenomena. 

Engineering and Design: Engineers use wave equations to design structures such as 

offshore platforms, coastal defenses, and ships that can withstand the forces exerted by 

waves. 

In summary, the wave equation is a powerful tool in oceanography that helps scientists 

understand and predict the behavior of waves in the ocean, contributing to broader 

studies of ocean dynamics and their impact on marine environments and human activities. 
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IMPORTANCE 

IN MATHEMATICS: 

Under partial differential equation, wave equation is used to calculate the displacementof 

one-dimensional wave. The wave equation alone does not specify a physical solution;a 

unique solution is usually obtained by setting a problem with further conditions, suchas 

initial conditions, which prescribe the amplitude and phase of the wave. Using thedesired 

PDE under different initial and boundary conditions various real-life problemcould be 

solved. Another important class of problems occurs in enclosed spacesspecified by 

boundary conditions, for which the solutions represent standing waves, orharmonics, 

analogous to the harmonics of musical instruments. 

IN PHYSICS: 

The classical wave equation is a cornerstone in mathematical physics and mechanics. 

Itsmodifications are widely used in order to describe wave phenomena. 

Electromagnetic Theory:Maxwell’s equations, which describe electromagnetism, can be 

combined to form wave equations that describe how electric and magnetic 

fieldspropagate as electromagnetic waves. This is crucial for the theory of light and the 

entirefield of optics. 
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Relativity and Gravitational Waves:In the context of general relativity, the wave equation 

helps describe the propagation of gravitational waves, ripplesin spacetime caused by 

accelerating masses. This is a significant area of research inastrophysics and cosmology.  

Description of Wave Propagation:The wave equation provides a mathematical framework 

for describing how waves propagate through different mediums. This includes mechanical 

waves in solids (like seismic waves), electromagnetic waves (such as light and radio 

waves), and acoustic waves (like sound waves). 

Prediction and Analysis:By solving the wave equation, physicists and engineers can predict 

the behavior of waves in different scenarios. This is crucial for designing devices that use 

waves (e.g., antennas, ultrasound machines) and understanding wave interactions with 

boundaries and obstacles. 

Computational Physics: Numerical solutions of the wave equation are critical 

forsimulations in computational physics. These simulations are used in weatherprediction, 

seismic analysis, and many other scientific and engineering applications.  

In summary, the wave equation is a cornerstone of both theoretical and applied physics, 

providing critical insights and tools for understanding and manipulating wavephenomena 

across different fields and scales.  

IN CHEMISTRY:  For Schrodinger equation for quantum wave functions, 

governing set of PDEs produceabsolutely accurate result.The wave equation, specifically 

the Schrödinger waveequation, is fundamental in chemistry for several reasons: 
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Foundation for Quantum Mechanics:In quantum mechanics, the wave equationforms the 

basis for the Schrödinger equation, which describes how the quantum stateof a physical 

system changes over time. This equation is essential for understanding thebehavior of 

particles at the quantum level.  

Reaction Mechanisms: Understanding the electronic structure of molecules helps 

inpredicting and explaining chemical reactions and mechanisms. It helps 

chemistsunderstand how and why reactions occur, the energy changes involved, and 

thetransition states. 

Spectroscopy:The solutions to the Schrödinger equation are used to predict theenergy 

levels of electrons in atoms and molecules. These energy levels correspond tothe 

absorption and emission spectra, which are used in various spectroscopictechniques to 

analyze and identify substances. 

Understanding Chemical Bonding:Quantum mechanics, based on the wave equation, 

explains how atoms bond to form molecules. It provides insights into the types of chemical 

bonds that can form (ionic, covalent, metallic) and how these bonds influence the 

structure, stability, and properties of molecules. 

Overall, the Schrödinger wave equation provides a comprehensive framework 

forunderstanding the microscopic properties of matter, which are essential 

forexplainingmacroscopic chemical phenomena. 
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CONCLUSIOn 

      Here are the key points to remember from these Notes.  

First, there are many solutions to the wave equation. It is only by adding boundary  and 

initial conditions that we turn a question about the wave equation into a well-posed 

mathematical problem.  

Second, for the constant coefficient wave equation, there are many techniques for 

computing the solutions to (well-posed) problems. These included derivation of wave 

equation, d’Alembert formula , Cauchy problem, examples of wave equation. A technical 

facility with these techniques will help you in solving real problems about waves. Finaly, 

for non-constant coefficient problems, we still expect many solutions to exist for  the wave 

equation. Well-posedness will come from imposing boundary and initial conditions.  

Local solutions can always be found. We can optimistically expect that the many solutions 

to the constant coefficient case can be applied, at least locally, to give methods of solution 

to the more general, non-constant coefficient case. 
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                  INTRODUCTION 
 

It has been seen that in case of an n-th order linear differential equation with a 

constant coefficient, the form of the complementary function may be readily 

determined. The general n-th order linear equation with variable coefficients is 

quite a different matter , however, and only in certain special cases can the 

complementary function be obtained explicity in closed form. One special case 

of considerable practical importance for which it is fortunate that this can be 

done is the so-called Cauchy-Euler equation or Equidimensional equation. This 

equation is the most important, if not the only higher order linear differential 

with variable coeeficients encountered in typical ordinary differential equations 

courses. A passing knowledge of history should give us pause. No matter how 

precocious Augustin-Louis Cauchy(1789-1857) was, he and Leonard Euler (1707-

1783) never collaborated, even under the generous Hardy-Littlewood 

guidelines. This does not necessarily mean that it is unfounded to put their 

names together. There are still obvious reasons these mathematicians could be 

connected to this equation and each other. Maybe Euler proposed the problem 

and Cauchy solved it. Perhaps Euler proved a simple case and Cauchy placed it 

in final form. Possibly they arrived at solutions independently. George Simmons 

provides a hint in his textbook [20, p.86]. He defines this equation as the Euler 

equidimensional equation with the footnote. Euler’s researchers were so 

extensive that many mathematicians try to avoid confusion by naming 

equations, formulas, theorems, etc., for the person who first studied them after 

Euler. In this contemporary world, not only the practitioners but also 

researchers use this to solve various problems of ordinary differential equations 

that have been coming into the calculation part. 
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                              IMPORTANCE 

 

The second order Cauchy-Euler equations are used in various fields of science 

and engineering such as in time-harmonic vibrations of a thin elastic rod, 

problems on annual and solid disc , wave mechanics ,etc.  

                   The applications of Euler’s formula extend far into both theoretical 

and practical areas. Knowing these real-world applications appreciate the power 

and elegance of this formula. In Electrical Engineering, the formula is 

indispensable in simplifying calculations that involve alternating current circuits, 

where complex numbers are used to represent quantities like voltage and 

current. This allows mathematicians and engineers to transform real-time 

differential equations into algebraic equations. Signal Processing is another field 

heavily drawing from Euler’s formula. Fourier transfom, a pivotal signal 

processing algorithm, relies on Euler’s formula to transform signals between 

time and frequency domains. This lets you understand the frequency 

components of a signal , beneficial in image processing, audio processing and 

telecommunications. Euler’s formula and its ilk made appearances in quantum 

mechanics. Quantum states, particularly wave functions, can indeed be 

expressed using Euler’s formula , aiding the understanding of atom behaviour 

and the nature of light. 
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DERIVATION OF CAUCHY – EULER ODE 

 

The differential equation  

                  an xn y(n) + an-1 xn−1 y(n−1) + · · · + a0y = 0 

is called the Cauchy-Euler differential equation of order n. the symbols ai, i = 

0,…,n are constants and an not equal to zero. the Cauchy-Euler equation is 

important in the theory of linear differential equations because it has direct 

application to Fourier’s method in the study of partial differential equations. in 

particular, the second-order Cauchy-Euler equation 

                             ax2y” + bxy’ + cy= 0 

accounts for almost all such applications in applied literature. a second 

argument for studying the Cauchy-Euler equation is theoretical: it is a single 

example of a differential equation with non- constant coefficients that has a 

known closed-form solution. this fact is due to a change in variables. (𝑥, 𝑦) →

(𝑡, 𝑧)given by equations x=et and z(t) = y(x), which changes the Cauchy-Euler 

equation into a constant-coefficient differential equation. since the constant 

coefficient equations have closed-form solutions, so also do the Cauchy-Euler 

equations. 
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GENERAL SOLUTION OF CAUCHY – 

EULER ODE:- 
 

1.Second order – solving through trial solution 

 

The most common Cauchy–Euler equation is the second-order equation, 

appearing in several physics and engineering applications, such as when solving 

Laplace's equation in polar coordinates. The second-order Cauchy-Euler 

equation is: 

                                 𝑥2 ⅆ2𝑦

ⅆ𝑥2
+ 𝑎𝑥

ⅆ𝑦

ⅆ𝑥
+ 𝑏𝑦 = 0 

 

We assume a trial solution: y = xm . Differentiating gives: 

                
ⅆ𝑦

ⅆ𝑥
= 𝑚𝑥𝑚−2 

And,  

              
ⅆ2𝑦

ⅆ𝑥2
 = 𝑚(𝑚 − 1)𝑥𝑚−2 

Substituting into the original equation leads to requiring  

            𝑥2(m(m−1)𝑥m-2) + a𝑥 ( m𝑥m-1) + b(𝑥m) = 0 

Rearranging and factoring gives the indical equation  

            𝑚2 + (a −1) m + b = 0. 

We then solve for m. There are three particular cases of interest :  

•  Case 1 of two distinct roots, m1 and m2; 

•  Case 2 of one real repeated root, m; 

•  Case 3 of complex roots, α ± βi. 

In case 1, the solution is  
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           𝑦 = 𝐶1𝑥𝑚1 + 𝐶2𝑥𝑚2 

 

Typical solution curves for a second-order Euler–Cauchy equation for the case of two real roots 

 

In case 2, the solution is  

            𝑦 = 𝐶1𝑥𝑚 ln(𝑥) + 𝐶2𝑥𝑚     

Typical solution curves for a second-order Euler–Cauchy equation for the case of a double root 

 

To get to this solution , the method of reduction of order must be applied after 

having found one solution 𝑦 = 𝑥𝑚. 

In case 3, the solution is: 
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             𝑦 = 𝐶1𝑥𝛼 𝑐𝑜𝑠(𝛽 𝑙𝑛(𝑥)) + 𝐶2𝑥𝛼sin ( 𝛽 𝑙𝑛(𝑥)) 

                       α = Re (m) 

                       β = Im (m) 

This form of the solution is derived by setting 𝑥 = ⅇ𝑡 𝑎𝑛𝑑 𝑢𝑠𝑖𝑛𝑔  Euler’s 

formula. 

Typical solution curves for a second-order Euler–Cauchy equation for the case of complex roots 

 

 

2.Second order - solution through change of variable 

                       𝑥2 ⅆ2𝑦

ⅆ𝑥2
+ 𝑎𝑥

ⅆ𝑦

ⅆ𝑥
+ 𝑏𝑦 = 0 

 

We operate the variable substitution defined by, 

                                                  𝑡 = 𝑙𝑛(𝑥) 

                            𝑦(𝑥) = 𝜑(𝑙𝑛(𝑥)) = 𝜑(𝑡). 

Differentiating gives,  

                                          
ⅆ𝑦

ⅆ𝑥
=

1

𝑥

ⅆ𝜑

ⅆ𝑡
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ⅆ2𝑦

ⅆ𝑥2
=

1

𝑥2
(

ⅆ2𝜑

ⅆ𝑡2
−

ⅆ𝜑

ⅆ𝑡
). 

Substituting 𝜑(𝑡) , the differential equation becomes: 

                               
ⅆ2𝜑

ⅆ𝑡2
+ (𝑎 − 1)

ⅆ𝜑

ⅆ𝑡
+ 𝑏𝜑 = 0. 

This equation in 𝜑(𝑡) is solved via its characteristic polynomial: 

                         𝜆2 + (𝑎 − 1)𝜆 + 𝑏 = 0. 

Now let λ1 and λ2 denote the two roots of this polynomial. We analyze the case 
where there are distinct roots and the case where there is a repeated root:  

If the roots are distinct, the general solution is: 

   𝜑(𝑡)   = 𝑐1ⅇ𝜆1𝑡 + 𝑐2ⅇ𝜆2𝑡, 

Where the exponentials may be complex. 

If the roots are equal, the general solution is 

                                    𝜑(𝑡)   = 𝑐1ⅇ𝜆1𝑡 + 𝑐2𝑡ⅇ𝜆1𝑡. 

In both cases, the solution, y(x) may be found by setting   𝑡 = 𝑙𝑛(𝑥) 

Hence, in the first case, 

                             𝑦(𝑥) = 𝐶1𝑥𝜆1 + 𝐶2𝑥𝜆2, 

And in the second case,  𝑦(𝑥) = 𝐶1𝑥𝜆1 + 𝐶2 𝑙𝑛(𝑥) 𝑥𝜆1. 

 

3.Second order - solution using differential operators 

Observe that we can write the second order Cauchy-Euler equations in terms 

of a linear differential operator L as  

          

    𝐿𝑦 = (𝑥2𝐷2 + 𝑎𝑥𝐷 + 𝑏𝐼)𝑦 = 0, 
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Where 𝐷 =
ⅆ

ⅆ𝑥
 and I is the identity operator. 

We express the above operator as a polynomial in xD rather than D. By the 

product rule, 

                  (𝑥𝐷)2 = 𝑥𝐷(𝑥𝐷) = 𝑥(𝐷 + 𝑥𝐷2) =  𝑥2𝐷2 + 𝑥𝐷. 

So, 

 

                          𝐿 =  (𝑥𝐷)2 + (𝑎 − 1)(𝑥𝐷) + 𝑏𝐼. 

 We can then use the quadratic formula to factor this operator into linear terms. 

More specifically, let  λ1 and  𝜆2  denote the (possibly equal) values of  

−
𝑎−1

2
±

1

2
√(𝑎 − 1)2 − 4𝑏  . 

Then, 

𝐿 = (𝑥𝐷 − 𝜆1𝐼)(𝑥𝐷 − 𝜆2𝐼). 

These factors commute,that is,   (𝑥𝐷 − 𝜆1𝐼)(𝑥𝐷 − 𝜆2𝐼) = (𝑥𝐷 − 𝜆2𝐼)(𝑥𝐷 −

𝜆1𝐼)  . Hence, if     𝜆1 ≠ 𝜆2  , the solution to 𝐿𝑦 = 0, is a linear combination of 

the solutions to each of (𝑥𝐷 − 𝜆1𝐼)𝑦 = 0 and (𝑥𝐷 − 𝜆2𝐼) 𝑦 = 0, which can be 

solved by separation of variables. Indeed, with 𝑖 ∈ {1,2}. 

We have (𝑥𝐷 − 𝜆ⅈ𝐼)𝑦 = 𝑥
ⅆ𝑦

ⅆ𝑥
 −𝜆ⅈ𝑦 =0. 

So, 

                   𝑥
ⅆ𝑦

ⅆ𝑥
 = 𝜆ⅈ𝑦 

                   ∫
1

𝑦
𝑑𝑦 = 𝜆ⅈ∫

1

𝑥
𝑑𝑥 

                  𝑙𝑛 𝑦 = 𝜆ⅈ 𝑙𝑛 𝑥 + 𝐶 

                   𝑦 = 𝐶ⅈⅇ𝜆𝑖 ln 𝑥  = 𝐶ⅈ𝑥𝜆𝑖. 

Thus , the general solution is 𝑦(𝑥) = 𝐶1𝑥𝜆1 + 𝐶2𝑥𝜆2. If  𝜆 = 𝜆1 = 𝜆2, then we 

instead need to consider the solution of (𝑥𝐷 − 𝜆𝐼)2𝑦 = 0. Let 𝑧 = (𝑥𝐷 − 𝜆𝐼)                   
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𝑦, so that we can write (𝑥𝐷 − 𝜆𝐼)2𝑦 = (𝑥𝐷 − 𝜆𝐼) 𝑧 = 0. As before, the solution 

of (𝑥𝐷 − 𝜆𝐼) 𝑧 = 0 is of the form 𝑧 = 𝐶1𝑥𝜆. So, we are left to solve  

(𝑥𝐷 −  𝜆𝐼)𝑦 = 𝑥
ⅆ𝑦

ⅆ𝑥
 −𝜆𝑦 = 𝐶1𝑥𝜆. We then rewrite the equation as: 

                                        
ⅆ𝑦

ⅆ𝑥
−

𝜆

𝑥
𝑦 = 𝐶1𝑥𝜆−1, 

Which one can recognize as being amenable to solution via an integrating factor. 

Choose 𝑀(𝑥) = 𝑥−𝜆  as our integrating factor . Multiplying our equation 

through by 𝑀(𝑥)  and recognizing the left hand side as the derivative of a 

product, we then obtain: 

                           
ⅆ

ⅆ𝑥
(𝑥−𝜆𝑦) = 𝐶1𝑥−1 

                                    𝑥−𝜆𝑦 = ∫ 𝐶1𝑥−1 𝑑𝑥 

                                          𝑦 = 𝑥𝜆(𝐶1 𝑙𝑛(𝑥) + 𝐶2) 

                                             = 𝐶1𝑥−1 𝐶1 𝑙𝑛(𝑥)𝑥𝜆 + 𝐶2𝑥𝜆. 
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                    THEOREM 
THEOREM: The transformation 𝑥 = ⅇ𝑡 reduces the equation  

                      𝑎0𝑥𝑛 ⅆ𝑛𝑦

ⅆ𝑥𝑛
+ 𝑎1𝑥𝑛−1 ⅆ𝑛−1𝑦

ⅆ𝑥𝑛−1
+ ⋯ + 𝑎𝑛−1𝑥 

ⅆ𝑦

ⅆ𝑥
+ 𝑎𝑛𝑦 = 𝐹(𝑥)-------(1) 

to a linear differential equation with constant coefficients. 

 

Proof: This is what we need! We shall prove this theorem for the case of second-
order Cauchy-Euler differential equation  

                            𝑎0𝑥2
 
ⅆ2𝑦

ⅆ𝑥2
+ 𝑎1𝑥

ⅆ𝑦

ⅆ𝑥
  +𝑎2 𝑦 = 𝐹(𝑥)--------(2) 

The proof in the general nth-order case proceeds in a similar fashion. Letting 

𝑥 = ⅇ𝑡, assuming 𝑥 > 0, we have 𝑡 = 𝑙𝑛(𝑥). Then  

                             
ⅆ𝑦

ⅆ𝑥
  = 

ⅆy

ⅆt

ⅆt

ⅆx
=

1

𝑥

ⅆ𝑦

ⅆ𝑡
 

And  

           
ⅆ2𝑦

ⅆ𝑥2
  =

1

𝑥

ⅆ

ⅆ𝑥
(

ⅆ𝑦

ⅆ𝑡
) +

ⅆ𝑦

ⅆ𝑡

ⅆ

ⅆ𝑥
(

1

𝑥
) =

1

𝑥
(

ⅆ2𝑦

ⅆ𝑡2

ⅆ𝑡

ⅆ𝑥
) −

1

𝑥2

ⅆ𝑦

ⅆ𝑡
 

                    
1

𝑥
(

ⅆ2𝑦

ⅆ𝑡2

1

𝑥
) −

1

𝑥2

ⅆ𝑦

ⅆ𝑡
=

1

𝑥2
(

ⅆ2𝑦

ⅆ𝑡2
−

ⅆ𝑦

ⅆ𝑡
) 

Thus  

                    𝑥
ⅆ𝑦

ⅆ𝑥
   =

ⅆ𝑦

ⅆ𝑡
  and 𝑥2

 
ⅆ2𝑦

ⅆ𝑥2
=

ⅆ2𝑦

ⅆ𝑡2
−

ⅆ𝑦

ⅆ𝑡
 

Substituting into equation (2) we obtain  

                      𝑎0(
ⅆ2𝑦

ⅆ𝑡2
−

ⅆ𝑦

ⅆ𝑡
) +𝑎1

ⅆ𝑦

ⅆ𝑡
 +𝑎2 𝑦 = 𝐹(ⅇ𝑡) 

Or  

                          𝐴0
ⅆ2𝑦

ⅆ𝑡2
+ 𝐴1

ⅆ𝑦

ⅆ𝑡
+ 𝐴2  𝑦 = 𝐺(𝑡)--------(3) 

Where         𝐴0 = 𝑎0, 𝐴1 = 𝑎1 − 𝑎0, 𝐴2 = 𝑎2, 𝐺(𝑡) = 𝐹(ⅇ𝑡).  

This is a second-order Cauchy-Euler differential equation with constant 

coefficients, which was we wished to show. 
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                    EXAMPLES 
1.Solve a Cauchy-Euler equation step by step. Consider the second-
order Cauchy-Euler equation: 

                                             𝑥2y′′−6xy′+13y=0 

 

SOLUTION:      

                          Assume a solution of the form 𝑦 = 𝑥𝑟. 

The derivatives are 𝑦′ = 𝑟𝑥𝑟−1 𝑎𝑛𝑑   𝑦′′ = 𝑟(𝑟 − 1)𝑥𝑟−2. 

Substitute 𝑦, 𝑦′,  and   y′′ back into the original equation: 

                     𝑥2 (𝑟(𝑟 − 1)𝑥𝑟−2) − 6𝑥( 𝑟𝑥𝑟−1) +13𝑥𝑟 = 0 
Factor out 𝑥𝑟  since (𝑥 ≠ 0) and solve the characteristic equation: 
                   𝑟(𝑟 − 1) −6 𝑟+13= 0 
                  ⇒ 𝑟2 − 7𝑟 + 13 = 0 
            This is a quadratic equation in r. 
Since the discriminant 𝑏2 − 4𝑎𝑐  is negative , the roots of the characteristic 
equation are complex.  
Let’s find the roots: 

              𝑟 =
7±√49−4(1)(13)

2
 

          ⇒    𝑟 =
7±√49−52

2
 

           ⇒    𝑟 =
7±√−3

2
 

          ⇒   𝑟 =
7

2
±

√3ⅈ

2
 

The roots are complex hence, the general solution is: 

                                         𝑦(𝑥) = 𝑥7∕2(𝐶1 cos (
√3

2
ln(𝑥)) + 𝐶2sin (

√3

2
ln(ϰ))) 

 
 

Here, 𝐶1  and 𝐶2  are constants determined by boundary conditions or initial 

values. 

2.Solve:  𝒙𝟐y′′−xy′+5y=0 

SOLUTION: 

                       The characteristic equation takes the form 
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               r(r−1)−r+5=0 

or 

               𝑟2−2r+5=0 

  

The roots of this equation are complex,  𝑟1,2=1±2i. 

Therefore, the general solution is  y(x)=x(𝑐1cos(2ln|x|)+𝑐2sin(2ln|x|)). 

 

 

3.Solve the initial value problem:  t2y′′+3ty′+y=0 , With the initial 

conditions  y(1)=0,y′(1)=1. 

SOLUTION:  

                            For this example the characteristic equation takes the form 

 

                    r(r−1)+3r+1=0 

 or 

                    𝑟2+2r+1=0 

  

There is only one real root,  r=−1. 

Therefore, the general solution is 

 

             y(t)=( 𝑐1+𝑐2ln|t|)𝑡−1 

However, this problem is an initial value problem. 

 At  t=1 we know the values of  y and  y′. 
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Using the general solution, we first have that 

 

                        0=y(1)= 𝑐1  

Thus, we have so far that  y(t)= 𝑐2ln|t|𝑡−1
 . 

Now, using the second condition and 

 

            y′(t)= 𝑐2 (1−ln|t|)𝑡−2 

 

we have 

 

                1=y(1)= 𝑐2 

  

Therefore, the solution of the initial value problem is  y(t)=ln|t|𝑡−1. 
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                    CONCLUSION 
 

 

The learners have to change Cauchy-Euler equation into a constant 

coefficient differential formula. Hence, these constant coefficient 

equations consist of closed form solutions that can be solved through 

Cauchy’s second degree equation. In summary, the Cauchy-Euler 

differential equation can be solved by transforming it into a characteristic 

equation. The nature of the roots of this characteristic equation (whether 

the are distinct real, repeated real, or complex) determines the form of 

the general solution. This method provides a structured approach to find 

solutions to this class of differential equations.  
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INTRODUCTION   
 

An operator takes a function as input and outputs another function. A Transform 

does the same thing with the added twist that the output function has a different 

independent variable. i.e. A transform is a mathematical operation that converts 

a function or a signal from one domain to another domain. There are many types 

of transforms, among them in this project we will discuss about Laplace 

Transform, a powerful mathematical tool used to solve differential equations, 

analyze control systems, process signals and many more.  

  

 Laplace transform is named in honour of the great French mathematician, Pierre 

Simon De Laplace (1749-1827), who used a similar transform (now called z 

transform) in his work on probability theory. The current widespread use of the 

transform came about soon after World War II although it had been used in the 

19th century by Abel, Lerch, Heaviside and Bromwich 

 

Like all transforms, the Laplace transform changes one signal into another 

according to some fixed set of rules or equations. The Laplace transform is a 

mathematical operation that converts a function of real variable t (Usually in the 

time domain) i.e. f(t), into a function of a complex variable 𝑠 (Usually in the 

complex - valued frequency domain) i.e. F(s). 

The Laplace transform is defined as the integral:   

                                     F(s) = ∫ 𝑓(𝑡) 𝑒−𝑠𝑡
∞

0
𝑑𝑡  

  The best way to convert differential equations into algebraic equations is the use 

of Laplace transformation. In this project, we embark on a journey to explore the 

intricacies of Laplace transform and delve into its myriad applications. Through 

theoretical insights, practical examples, and real-world case studies, we aim to 

unravel the mysteries behind this transformative mathematical tool and 

showcase its indispensable role in modern science and technology. 
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1.LAPLACE TRANSFORM:  

 

1.1 Definition:  

          The Laplace transform is a mathematical operation that converts a 

function of real variable t (Usually in the time domain) i.e. f(t), into a function of a 

complex variable 𝑠 (Usually in the complex - valued frequency domain) i.e. F(s). 

The Laplace transform is defined as the integral:   

                    L {f(t)} = F(s) = ∫ 𝑓(𝑡) 𝑒−𝑠𝑡
∞

0
𝑑𝑡 

1.2. Example:  Find  the Laplace transform of the function f(t)=1 

 Solution:   L{1} = ∫ 𝑒−𝑠𝑡
∞

0
 dt 

= [ 
𝑒−𝑠𝑡

−𝑠
]0

∞  

  =  [ 
𝑒−∞−𝑒0

−𝑠
 ] = 

1

𝑠
 

 

 

 

 

 

 

 

 

 

 

Laplace transform does not exist for all functions. If it exists, it is uniquely 

determined. The following conditions are to be satisfied: 

Let  ∫ 𝑓(𝑡) 𝑒−𝑠𝑡
∞

0
𝑑𝑡     exists form s > a, if 

1. f(𝑡) is peicewise continuous on every finite interval 

2. 𝑓(𝑡) Satisfies the following equality:  |f(t)|  ≤   b.eat    for all t≥0 and for some 

constants a and b. 

Then L [f(t)] exists. 

𝑓 𝑡 𝑏 𝑎𝑡 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑡
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1.1. Some basic Laplace transform :  

 

 

2.INVERSE LAPLACE TRANSFORM:  
 

2.1. Definition:  

   The inverse Laplace Transform is a mathematical operation 

that reverses the process of taking Laplace Transforms. It converts a function from 

the Laplace domain, where complex numbers are used, (i.e. F (s) ) back to the 

original time domain ( i.e. f (t) ).  

And it is denoted by :  L -1  { F (s) } = f (t)  

 

2.2. Example: Find  the Laplace transform of the function f(t) = 
1

𝑠
 

         Solution:    L -1  { 
1

𝑠
 } = 1 

 

2.3. Some basic Inverse Laplace transform :  

 

f (t) tn eat sinat cosat sinhat coshat eatsinbt eatcosbt 

F(s)  

𝑛!

𝑠𝑛+1
 

 
1

𝑠 − 𝑎
 

 
𝑎

𝑠2 + 𝑎2
 

  s > 0 

 
𝑠

𝑠2 + 𝑎2
 

  s > 0 

 
𝑎

𝑠2 − 𝑎2
 

 

 

𝑠

𝑠2 − 𝑎2
 

 

 
𝑏

(𝑠 + 𝑎)2 

+𝑏2

 

 

 
𝑠 − 𝑎

(𝑠 + 𝑎)2 

+𝑏2

 

 

F(s)  
1

𝑠𝑛+1
 

 
1

𝑠 − 𝑎
 

 
𝑎

𝑠2 + 𝑎2
 

     s > 0 

 
𝑠

𝑠2 + 𝑎2
 

   s > 0 

 
𝑎

𝑠2 − 𝑎2
 

 

 

𝑠

𝑠2 − 𝑎2
 

 

f (t) 𝑡𝑛

𝑛!
 

eat sinat cosat sinhat coshat 
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3.PROPERTIES OF LAPLACE TRANSFORM:  
 

3.1. Linearity:  

If f1(t),f2(t) be any function of t and a1,a2 are ant constant, then : 

                       L{a1f1(t) + a2f2(t)} = a1L{f1(t)} + a2L{f2(t)}     

 

3.2. First Shifting Property :   

If F(s) is the Laplace transform of the function f(t) then F(s-a) is the Laplace 

transform of eatf(t). Where a is real or complex numbers  

i.e. L{f(t)} = F(s) then L {eat f(t)} = F(s-a)  

 

Example: Find the Laplace transform of the function t4 e3t  

Solution: Let F(t) = t4, then  

L{t4} =  
4!

𝑠5 
  = 

24

𝑠5 
 = F (s) 

Now,  L{ e3t t4 } = F (s-3)  

= 
24

 (s−3)5
 

 

3.2.1.First Shifting Property for inverse Laplace transform: 

If L-1 { F(s) } = f(t), then for any constant(real or complex) a  

L-1 { F(s-a) } = eat  f(t) = eat L-1 { F(s) }  

 

Example:  Find the Laplace transform of t4 e3t 

Solution:  Let f (t) = t4 , then  

L-1 { 
24

 (s−3)5
 } =  e3t  L-1 { 

24

𝑠5 
  } 

 = e3t t4   
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3.3. Second Shifting Property :  

Let f(t) be a function of t, & L {f(t)}  =  F (s) then  

L{ f(t-a) H (t-a) } = e-as F(s)  

 

Example:  Find the Laplace transform of  {
𝑡 − 1     𝑡 ≥ 1
0            𝑡 < 1

 

Solution:  We can write it as ( t −1 ) {
1           𝑡 ≥ 1
0            𝑡 < 1

  

L ( t ) = ( t −1 ) H ( t −1 ) = 
1

𝑠2
 

Now L { ( t −1 ) H ( t −1 ) } =  𝑒−𝑠 
1

𝑠2
   

 

 3.3.1.Second Shifting Property for inverse Laplace transform :  

Let f(s) be a inverse Laplace transform of f(t) such that L-1{ F(s)} = f(t) then  

                 L-1{ e-as F (s) } = f (t-a) H (t-a),    

Where H(t-a) is a unit step function.  

 

Example:  Find L -1 { 
𝑒
− 
𝜋
3
𝑠

𝑠2 + 1
 } 

Solution:  Here F (s) = 
1

𝑠2+1 
  then,  L -1 { F(s) } = sin t  

So,  L -1 { 
𝑒
− 
𝜋
3
𝑠

𝑠2 + 1
 } = sin ( t - 

𝜋

3
  ) H ( t -  

𝜋

3
  ) 

 = {
sin ( t −   

𝜋

3
 )    t ≥  

𝜋

3
 

0                           𝑡 <  
𝜋

3

    

A function of type  {
1,    𝑡 ≥ 𝑎
0,    𝑡 ≤ 𝑎

      is called unit step function.    

It is denote by  H (𝑡 − 1) 
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 3.4. Convolution Property for inverse Laplace transform :  

 

3.4.1. Convolution of two function : 

If F(t) and G(t) are two functions, then the convolution of F and G is denoted by 

F*G and is defined by  

                            F*G  =  ∫ 𝐹(𝑢) 𝐺 (𝑡 − 𝑢)𝑑𝑢
𝑡

0
  

 

Example: Find L-1 { 
1

(𝑆−1)(𝑆+2)
 } 

Solution:  Let F (s) = 
1

(𝑆−1)
  & G(s) = 

1

(𝑆+2)
 

Then, L-1{ f(s) * g(s)} = ∫ 𝐹(𝑢) 𝐺 (𝑡 − 𝑢)𝑑𝑢
𝑡

0
 

= ∫ 𝑒𝑢𝑒−2(𝑡−𝑢)𝑑𝑢
𝑡

0
 

= 𝑒−2𝑡 ∫ 𝑒3𝑢𝑑𝑢
𝑡

0
  

= 𝑒−2𝑡 

 

3.5. Change of scale property :  

If L { f(t) } = F(s), then L { f (at) } = 
1

𝑎
 F ( 

𝑆

𝑎
 )  

 

Example: If L { f √𝑡 } =1/ s √1+s2 , Find L { f (2√𝑡) } 

Solution:  L { f √4𝑡 } = 1/4  [ 1 / ( 
𝑆

4
  √(1+( 

𝑆

4
 )2 )) ] 

= 1 / ( s  √(1+ 𝑠2/16) ) 

= 4 / ( s  √(s2+16) )  

Therefore, L { f (2√𝑡) } = 4 / ( s  √(s2+16) )  
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3.6. Multiplicative Property:  

Let f(t) be a function and if L { f (t) } = F (s) then  

L { t f(t) } = - d/ds  F(s)  &  L { tn f(t) }  = (-1) n  dn / ds n   F (s)  

 

Example: Let  g(t) = t cos t, then find  L { g(t) }  

Solution:  Let f(t) = cos t  

Then L{ f(t) } =  s / s2 + 1  

Now  L{ t f(t) } = - d/ds { s / s2 + 1 }  

= - ( - s2 + 1 / (s2 + 1)2  ) 

=  s2 + 1 / (s2 + 1)2   

Therefore, L { g(t) } = L { t cost } = s2 + 1 / (s2 + 1)2   

 

3.6.1. Multiplicative Property for inverse Laplace transform :   

Let f(s) be a Laplace transform of a function f(t) then   

L-1  { F (s) } = f (t)  and  L-1  { F `(s) } = -t f(t)   L-1  { F `(s) } = -t L-1  { F (s) }   

 

Example:  Find L -1 { log (
s−4 

s+3
) }  

Solution:  Here F (s) = log (
s−4 

s+3
) = log (s-4) – log (s-3)  

Now, F`(s) = 
1 

s−4
−

1

s+3
   

L-1  { F `(s) } = L-1 { 
1 

s−4
 }    - L-1 { 

1

s+3
 }  

 L-1  { F `(s) } = e 4t  - e -3t  

 -t L-1  { F (s) } = e 4t  - e -3t 

  L-1  { F(s) } =  
−(e 4t  − e −3t) 

𝑡
 =  

e−3t  − e 4t 

𝑡
 

Therefore L -1 { log (
s−4 

s+3
) } = 

e−3t  − e 4t 

𝑡
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3.7. Division Property :  

If f(s) be a Laplace transform of f(t) i.e. L{ f(t) } = F(s), then  

            L { f (t) / t } =  ∫ 𝐹(𝑠) 
∞

0
𝑑𝑠  

 

Example:  Find the Laplace transform of  sin t / t  

Solution:  We know that L ( sin t ) = 1 / s2 + 1  

Then, L { sin t / t } = ∫  
∞

0
1 / s2 + 1 ds  

                                = [ tan -1 s ]0
∞   

=  π / 2  -  tan -1 s  

=  cot t -1  s 

 

 

 

 

3.7.1. Division Property for inverse Laplace transform :  

Let  L-1  { F (s) } = f(t), then  

            L -1 { F (s) / s } =  ∫ 𝑓(𝑡) 
∞

0
𝑑𝑡  

 

Example:  Find inverse Laplace transform of  1 / s ( s2 +4 )  

Solution: We know that  L -1 { 1 / ( s2 +4 ) } = sin 2t / 2  

L -1{ 1 / s ( s2 +4 ) } = 1/2  ∫ sin 2𝑡
∞

0
𝑑𝑡  

= -1/2 [ cos 2t /2 ]0
t  

= -1/4 [cos2t – 1 ]  

= 1/4  [ 1-cos2t ] 

 

NOTE:  L { cos t / t } does not exist as log ∞ does not exist. 
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3. THEOREMS OF LAPLACE TRANSFORM  

 

1. Initial Value Theorem :  

The initial value theorem of Laplace transform enables us to calculate the initial 

value of a function x(t) [ i.e.,x(0)] directly from its Laplace transform X(s) without 

the need for finding the inverse Laplace transform of X(s). 

 

Statement : 

The initial value theorem of Laplace transform states that, if  

x(t) 
 𝐿𝑇
↔  X(s)  

Then,   lim
𝑡→0
 𝑥(𝑡)= x(0) = lim

𝑠→∞
𝑠 𝑋 (s)  

Proof :  

From the definition of unilateral Laplace transform, we have, 

  L[x(t)] = X(s) ∫ 𝑥(𝑡) 𝑒−𝑠𝑡
∞

0
𝑑𝑡 

Taking differentiation on both sides, we get, 

L[ 
𝑑𝑥(𝑡)

𝑑𝑡
 ] = ∫

𝑑𝑥(𝑡)

𝑑𝑡
  𝑒−𝑠𝑡

∞

0
𝑑𝑡 

By the time differentiation property [i.e. 
𝑑𝑥(𝑡)

𝑑𝑡
  
 𝐿𝑇
↔  sX(s)− x(0−)] 

 of Laplace transform, we get, 

L[ 
𝑑𝑥(𝑡)

𝑑𝑡
 ] = ∫

𝑑𝑥(𝑡)

𝑑𝑡
  𝑒−𝑠𝑡

∞

0
𝑑𝑡 = sX(s) − x(0−) 

Now, taking lim s→∞ on both sides, we have, 

lim
𝑠→∞

 { ∫
𝑑𝑥(𝑡)

𝑑𝑡
  𝑒−𝑠𝑡

∞

0
𝑑𝑡 } = lim

𝑠→∞
 {sX(s)−x(0)} 

⇒ 0 = lim
𝑠→∞

 sX(s)−x(0) 

⇒ x(0)= lim
𝑠→∞

 sX(s) 

Therefore, we have, 

 
lim
𝑡→0
 x(t) = x(0) = lim

𝑠→∞
 sX(s) 
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2. Final Value Theorem :  

The final value theorem of Laplace transform enables us to find the final value of 

a function x(t) [i.e. x(∞)] directly from its Laplace transform X(s) without the 

need for finding the inverse Laplace transform of X(s). 

 

Statement : 

The final value theorem of Laplace transform states that, if  

x(t) 
 𝐿𝑇
↔  X(s)  

Then,   lim
𝑡→∞

 𝑥(𝑡) = x(∞) = lim
𝑠→0
 𝑠 𝑋 (s)  

Proof :   

From the definition of the unilateral Laplace transform, we have  

L[x(t)] = X(s) = ∫ 𝑥(𝑡) 𝑒−𝑠𝑡
∞

0
𝑑𝑡 

Taking differentiation on both sides, we get, 

L[ 
𝑑𝑥(𝑡)

𝑑𝑡
 ] = ∫

𝑑𝑥(𝑡)

𝑑𝑡
  𝑒−𝑠𝑡

∞

0
𝑑𝑡 

By the time differentiation property [i.e. 
𝑑𝑥(𝑡)

𝑑𝑡
  
 𝐿𝑇
↔  sX(s) − x(0−)] 

 of Laplace transform, we get, 

L[ 
𝑑𝑥(𝑡)

𝑑𝑡
 ] = ∫

𝑑𝑥(𝑡)

𝑑𝑡
  𝑒−𝑠𝑡

∞

0
𝑑𝑡 = sX(s) − x(0−) 

Now, taking lim s→0 on both sides, we have, 

lim
𝑠→0
 { ∫

𝑑𝑥(𝑡)

𝑑𝑡
  𝑒−𝑠𝑡

∞

0
𝑑𝑡 } = lim

𝑠→0
 {sX(s) − x(0−)} 

⇒ ∫
𝑑𝑥(𝑡)

𝑑𝑡
  𝑑𝑡

∞

0
 = lim
𝑠→0

 { sX(s) − x(0−) } 

⇒ x(∞)− x (0−) =  lim
𝑠→0

 sX(s) 

⇒ x(∞) = lim
𝑠→0

 sX(s) 

Therefore, we have, 

lim
𝑡→∞

 𝑥(𝑡) = x(∞) = lim
𝑠→0
 𝑠 𝑋 (s) 
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3. Convolution Theorem :  

If f(s) and g(s) are Laplace transform of F(t) and G(t) respectively  

i.e. If L-1{ f(s) } = F(t) and L-1{ g(s) } = G(t) then  

 

L-1{ f(s) * g(s)} = ∫ 𝐹(𝑢) 𝐺 (𝑡 − 𝑢)𝑑𝑢
𝑡

0
  

  or  

L-1{ f(s) * g(s)} = ∫ 𝐺(𝑢) 𝐹 (𝑡 − 𝑢)𝑑𝑢
𝑡

0
 

 

 

4. SOLVING ODE BY LAPLACE TRANSFORM  

 
Let f ( y′) = Q be an ordinary differential equation,  

then take Laplace transform both sides  

 

 L{f (y′)} = L(Q)  

 

Where, L{y′} = sL(y) − y(0) 

L(y′′) = s²L(y) −  sy(0) − y' (0) 

 

Problem:  Solve the initial value problem  y′′+ 4y=0,  y(0) =1,  y′(0) =3 

 

Solution: Transforming the equation, we have 

 0 = s2 y− sy (0) − y′(0) + 4  

 

Solving for  Y , we have 

Y(s) = 
𝑠+3

𝑠2+4 
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Splitting the expression into two terms, we have 

Y(s) = 
𝑠

𝑠2+4 
+  

3

𝑠2+4 
   

 

The first term is now recognizable as the transform of  cos2t.The second term is 

not the transform of  sin2t. It would be if the numerator were a 2 .  

This can be corrected by multiplying and dividing by 2  

3

𝑠2+4 
  =  

3

2
( 

2

𝑠2+4 
)  

 

The solution is then found as 

   y(t ) = L−1[
𝑠

𝑠2+4 
+ 
3

2
( 

2

𝑠2+4 
)] = cos 2t + 

3

2
 sin 2t    
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5. SOLVING PDE BY LAPLACE TRANSFORM  

 

Problem: Solve: 
𝜕𝑢

𝜕𝑥
= 2

𝜕𝑢

𝜕𝑡
 + u 

BC: u(x, 0) = 6e-3x,  x > 0, t > 0 

Solution: Taking Laplace transform of both sides of the given PDE, 

 L { 
𝜕𝑢

𝜕𝑥
} = 2L { 

𝜕𝑢

𝜕𝑡
 } +L{u} 

  
𝑑𝑈

𝑑𝑥
 = 2[ sU−u (x,0) ] + U 

By the given Boundary Conditions [BC]. 

𝑑𝑈

𝑑𝑥
 = − (2s+1)U = −12e-3x 

Which is an ordinary linear differential equation in U 

Its  Integrating Factor (I.F.) = 𝑒−∫(2s+1)dx = 𝑒−(2𝑠+1)𝑥  

Therefore the solution is  

U 𝑒−(2𝑠+1)𝑥 = C −12∫ 𝑒−3𝑥 𝑒−(2𝑠+1)𝑥 𝑑𝑥 

= C −12 ∫ 𝑒−(2𝑠+4)𝑥 𝑑𝑥  

= C +
6

𝑠+2
𝑒−(2𝑠+4)𝑥 

Or, U =  C𝑒−(2𝑠+1)𝑥 +
6

𝑠+2
𝑒−3𝑥 

Where C is the constant of integration. Since when x→∞, u(x, t) must be bounded.  

Therefore, when x→∞,  U(x, t) should also be bounded 

Hence, C = 0  

The solution is U = 
6

𝑠+2
𝑒−3𝑥 

Now taking inverse Laplace transform of both the sides of   

 L-1 {U} = L-1 { 
6

𝑠+2
𝑒−3𝑥 } 

Therefore the required solution is u(x, t) = 
6

𝑠+2
𝑒−2𝑡−3𝑥   
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     APPLICATIONS 

 

1. Converting ODE into Algebraic Equation :  

The amazing thing about using Laplace transforms is that we can convert the whole 

ODE initial value problem (I.V.P) into Laplace transformed functions of s, simplify 

the algebra, find transformed solution F(s). Then undo the transform to get back to 

the required solution f as a function of t.  

 

 

 

Example: Initial value problem: the basic Laplace steps 

Solve 𝑦′′ − 𝑦 = 𝑡,     y(0) = 1,     𝑦’(0) = 1       

 

 

 

 

 

 

 

 

 

 

2. In Probability Theory : 

It is used in probability theory to derive the moment-generating function of a 

probability distribution. The moment- generating function is used to find moments 

of a distribution, which are useful in statistical analysis.  

 

Initial 

Value 

Laplace 

Transform 

Algebraic 

Equation  

Given Problem  

𝑦′′ − 𝑦 = 𝑡      

y(0)= 1          

𝑦’(0) = 1      

  Subsidiary Equation       

(s2 – 1) Y  = s + 1 + 1/s2 

Solution of Subsidiary                

Equation     

Y = 1/s−1 + 1/s2 −1 − 1/s2 

Solution of given 

problem  

Y(t) = et + sinht – t  
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3.  In Economics : 

Laplace transform helps in analyze economic systems, including the behavior of 

variables like GDP, inflation, and unemployment. It is used to study dynamic 

economic systems, enabling economists to understand how systems change over 

time. Used in econometrics to filter data and separate signal from noise.analyze the 

stability of economic systems. Helps economists understand economic cycles and 

oscillations, enabling better policy decisions. 

 

4. In Biology : 

 Modeling population dynamics 

 Understanding pharmacokinetics: Laplace transform is used to study the 

absorption, distribution, metabolism, and excretion of drugs. 

 Analyzing epidemiological models : It analyze the spread of diseases and 

understand the impact of interventions  

 Modeling ecological systems: used to study the dynamics of ecological systems, 

including predator-prey relationships. 

 Analyzing gene regulatory networks: It helps understand how genes are 

regulated and how their expression changes over time. 

 Understanding the immune system_: Laplace transform helps analyze the 

behavior of the immune system and understand how it responds to pathogens. 

 

5. Analyzing system :   

(i) It is widely used to analyze and design control systems. It helps to convert time-

domain signals into frequency-domain signals, making it easier to analyze and 

design the system's behaviour. 

(ii) It is used to analyze and design electrical circuits. In addition, it helps to solve 

differential equations related to circuits and determine their stability and transient 

response. 

(iii) It is used in mechanics to analyze the behaviour of mechanical systems, such 

as structures' vibrations, the pendulum's motion, and system dynamics.  

 

6. In Finance :  

In the field of finance, the Laplace transform is used to analyze financial time 

series, model derivative contracts, and study risk management problems and option 

pricing.  
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ADVANTAGES 

 

 

1. Simplifies differential equations into algebraic equations. 

2. Converts integral equations into algebraic equations. 

3. Helps in stability analysis and determining system stability. 

4. Facilitates transfer function analysis and obtaining transfer functions. 

5. Enables filter design and analysis. 

6. Analyzes electrical circuits and provides insight into circuit behavior. 

7. Solves boundary value problems and partial differential equations. 

8. Provides a powerful tool for solving PDEs and analyzing systems. 

9. Facilitates control system design and ensures stability and desired 

performance. 

10. Offers a unified approach to solving various types of equations and 

analyzing different systems.  
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LIMITATIONS 
 

 

1. Limited to linear systems:   Laplace transform is only applicable to linear 

systems, i.e limiting its use in analyzing nonlinear systems, which is common in 

many real-world application. 

 

2. Requires initial conditions:  Laplace transform requires initial conditions to be 

specified, which may not always be available or easy to determine.  

 

3. Limited to time-invariant systems:  It is only applicable to time-invarient 

system, i.e. you cannot use it to analyze systems that change over time, such as 

those with time-varying parameter.  

 

4. Discontinuities:  The Laplace transform may encounter difficulties in handling 

functions with discontinuities, such as step functions or impulses 

 

5. Difficulty in dealing with non-integer order systems:  Laplace transform is not 

well-suited for analyzing systems with non-integer order derivatives or integral. 

 

6. Limited to systems with constant coefficients:  Laplace transform assumes 

constant coefficients, which may not be the case in many real-world applications. 

 

7. May not be suitable for systems with distributed parameters: Laplace transform 

is not well-suited for analyzing systems with distributed parameters.  

 

Despite these disadvantages, the Laplace transform remains a powerful tool in 

many fields, and its advantages often outweigh its limitations. However, it's 

essential to be aware of these disadvantages choose the appropriate analytical tool 

for a specific problem.    
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CONCLUSION  

 

 

The Laplace transformation is a powerful mathematical tool that has proven to 

be essential in many fields of study. For example, its ability to transform a 

function of time into a function of s has made it an invaluable tool for solving 

differential equations and analyzing linear time-invariant systems. The real-life 

applications of the Laplace transformation are vast and diverse, ranging from 

electrical circuits and control systems to economics and physics. 

 

In this project, we explored the properties and applications of the Laplace 

transform.: Through this project, We learned how to apply the Laplace transform 

to various problems & gained a deeper understanding of the Laplace transform's 

ability to: 

 

 Solving ordinary differential equations (ODEs)  
 

 Solving partial differential equations (PDEs)  
 

 Convert differential equations into algebraic equations 
 

 Enable the use of algebraic methods to solve problems  

 

We also saw how the Laplace transform is used in various fields, including 

physics, engineering, and economics. Overall, this project demonstrated the 

importance and versatility of the Laplace transform in solving real-world 

problems. 
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